
562 PROCEEDINGS OF THE IEEE, VOL. 69, NO. 5, MAY 1981

Correspondence Processes- m ; Dynamic Scene
Analysis

J. K. AGGARWAL, L. S . DAVIS, AND W. N. MARTIN

Invited Paper

Abstmct-One of the fundamental problems in dynamic scene analy-
sis is the tracking of objects from frame to frame. A general approach
to tracking is to establish correspondences between points, or sets of
points, between frames and then group the sets into objects based upon
similarity of motion. This paper will focus on processes for establish-
ing the correspondence between sets of points in successive frames. A
succession of correspondence processes are discussed, based on the
factors which contribute to the complexity of the correspondence
problem.

I. INTRODUCTION
OMPUTATIONAL models for the analysis of time se-
quences of images of dynamic scenes are crucial for the
solution of many image understanding problems. For

example, in meteorology, the automatic prediction of frontal
positions from satellite images of cloud cover requires that the
movements of clouds be tracked from image to image [1 1. In
fact, meteorological applications imparted the initial impetus
to research in motion analysis. The spectrum of applications
has widened dramatically in the past several years to include
biomedicine, tactical and strategic military applications and
industrial automation. In addition to this variety of real-world
problems, models for motion analysis are of fundamental
importance to our understanding of the human visual system.
Mammalian visual systems not only contain “software” for
motion analysis [2] , but apparently also include “hardware”
for the detection of moving objects in the visual field [31, [4] .

Perhaps the most prevalent problem in motion analysis is
the tracking of objects from frame to frame. Tracking is a
prerequisite for computing either the motion of the object
or a description of how the object is changing. A general
approach to tracking is to establish correspondences between
points, or sets of points, in successive frames and then to
group those sets into objects based on similarity of motion.
Such grouping operations are often based on the assumption
that the objects are rigid or that they are articulated (i.e.,
jointed) but composed of rigid parts. Such assumptions im-
pose structural constraints on the relative positions of object
points, which in turn impose constraints on the two-dimen-
sional pattern of positions projected by those points onto the
image plane. For example, Ullman [51 and Roach and Aggar-
wal [6] use the rigidity assumption to compute the three-
dimensional structure of moving objects from multiple views

work was supported by in part funds derived from the National Science
Manuscript received July 3, 1980; revised October 23, 1980. This

Foundation under Grant ENG-7904037 and the Air Force OTrke of
Scientific Research under Grant AFOSR 77-3190.

Department of Computer Science, The University of Texas, Austin,
J . K. Aggarwal is with the Department of Electrical Engineering and

TX 78712.
L. S. Davis and W. N. Martin are with the Department of Computer

Science, The University of Texas, Austin, TX 78712.

of the object in motion, while Webb [7] and Rashid [8] dis-
cuss how jointed objects may be analyzed. It is important to
note that in a great number of applications the objects in mo-
tion can be treated as two-dimensional so that grouping opera-
tions and accompanying computational models of motion can
be specified solely on the basis of changes in image coordinates.

This paper will focus attention on processes for establishing
the correspondence between sets of points in successive frames.
It should be pointed out that these correspondence processes
have applications to other problems in image understanding
besides motion analysis-e.g., stereopsis, change detection,
etc. We will not consider the subsequent grouping procedures
which establish structure and motion from such correspon-
dences. Discussions of those problems can be found in
[SI, [61.

There are a .number of factors- which contribute towards
making the correspondence problem quite difficult; the
presence or absence of such factors determines the procedures
which can be applied to solve any specific correspondence
problem. First, the types of transformations that objects can
be subject to from frame to frame must be considered. Can
the objects change their orientation in the field of view, or
their size? Can their shape change, and if so, is any prior in-
formation available which constrains such changes? (This is
especially important for tracking clouds, which change shape,
sometimes dramatically, from frame to frame.)

Objects may be moving against changing backgrounds, and
this tends to complicate the correspondence processes. It is
much simpler to track an object which is moving against a
clear blue sky than it is to track an object which is moving
along the ground from one type of textured region to another.
Furthermore, if it is possiblz for the object to move behind
other objects, so that it is only partly visible at times (or even
completely invisible for some time) then the correspondence
processes must be able to establish their matches given only
partial information.

We will consider two general approaches towards establish-
ing a correspondence between image parts in successive frames.
The first is based on constructing “iconic” or picture-like
models of a segment of one frame. Such iconic models are
sometimes referred to as templates in the picture processing
literature. Early psychological theories of visual perception
attempted to account for human pattern recognition based
on iconic memory models. However, such theories fail to
account for recognition of patterns that are highly abstract,
or generalized (e.g., the recognition of caricatures, cartoons,
etc.). Similarly, computational theories of pattern recognition
based on iconic pattern representations are not applicable in
all situations. Nevertheless, the computational efficiency of
algorithms for matching iconic models against images justifies

0018-9219/81/0500-0562$00.75 0 1981 IEEE

AGGARWAL et al.: DYNAMIC SCENE ANALYSIS 563

their serious consideration before more general modeling tech-
niques are adopted.

The second approach employs structural models for seg-
ments of the first frame, and then computes homologous
representations for segments of the second frame against
which it matches those pieces. Such procedures can, in
general, tolerate grosser changes in size, shape, etc., than can
procedures based on iconic models. They are, however, com-
putationally more complex.

11. TRACKING USING ICONIC MODELS
In tracking using iconic models, one must first “lock-on,’’ or

detect a subset of the first frame which one suspects contains
a moving object, construct an iconic representation of that
subset, and then match that iconic representation against the
second frame. Suppose that for the frame acquired at t i ,

F1 = f (x , y , t l) , x1 G X G X Z , Y 1 GY GY2

is a subimage that contains a moving object. For F1 we define

A x = x 2 - x 1 and A y = y z - y 1 .

Then there are a variety of iconic representations which can be
constructed based on F1. These include

1) usingF1 directly;
2) segmenting F 1 into a binary image (i.e., an image com-

posed of 0’s and l’s), where the 1’s indicate object points and
the 0’s nonobject points;

3) applying an edge detection operation to F1 resulting in a
binary image where the edges, or boundaries, of the objects are
labeled 1, and all other points are labeled 0.

The advantage of using F1 directly is that it requires the
minimal amount of computation to construct the iconic repre-
sentation. However, the exact gray levels in F1 depend not
only on the properties of the moving object (e.g., its reflec-
tance and shape), but also on the properties of the background
against which it is moving. If this background can change
dramatically, relative to the object, from frame to frame (e.g.,
if the background is textured), then it might prove difficult
to match F1 based upon this direct representation.

On the other hand, segmenting F 1 into either an object/
background or edge/no-edge representation makes the salient
shape characteristics of the moving object explicit in the iconic
representation. One must be able, however, to compute such
segmentations reliably. In the remainder of this section we
will denote by F; the iconic representation of F1. Suppose

F 2 = f (x , y , t 2) , O G x G n , O G y G m ,

is the frame acquired at time t 2 . In order to match F1 against
a piece of F z (i.e., a subset of F2 having the same shape and
size as F1) one must first compute an iconic representation of
that subset which is of the same form as the representation
chosen for F 1 . We will let Fi refer to that iconic representation

Next, one must adopt some measure of match between F ;
and F;. The measures may be either similarity measures (high
values indicate match) or difference measures (low values
indicate match). A variety of such measures have been con-
sidered including the following.

of Fz.

1) Normalized cross correlation (similarity measure)

where

3) Sum of squared differences (difference measure)

S(X, v) = 2 [~ l (x l + i , y1 +i) - + i, Y + j) l Z . (3)
A x A y

i = O j = O

The normalized cross correlation is closely related to the
sum of squared differences since

A x A y

+ F2(x + i , y +jIz
i = o j = o

and if F: and 2 x F: were fixed, then S(x , y) would be
minimized when

A x A y
Fl(xl + i , y l + j) Fz(x + i, y +i)

i=o j = o

is maximized. This latter quantity is the unnormalized cross
correlation. One must normalize it as above because the
unnormalized cross correlation will be high in areas of F2
having high average intensity, whether or not they match F 1 .
For C(x , y) , it is easily shown that 0 < C (x , y) < 1, and that
C (x , y) = 1 if and only if for some constant c [9]

From the point of view of computational expediency, the
difference measures (2) and (3), are preferable to the similarity
measure (1) because their cumulative nature (see below) allows
them to be incorporated into fast matching algorithms.

The straightforward space-domain algorithm for computing
any of the preceding match measures requires A x A y opera-
tions per pixel. If A x and A y are large, then this can take a
significant amount of computing time on a general-purpose
computer. We will discuss two approaches toward reducing
this time

1) the use of special-purpose computer architecture;

5 64 PROCEEDINGS OF THE IEEE, VOL. 69, NO. 5, MAY 1981

2) the development of faster algorithms for general purpose
computers.

There are at least three distinct types of architectures for
image processing which can profitably be distinguished; each
is accompanied by its own specific set of advantages, disad-
vantages, and theoretical and practical problems.

1) “Focal-plane architectures” which are actually integrated
into video sensors behind the focal plane and which are
capable of processing data at high-quality television data rates
(7.5 MHz).

2) Cellular arrays of simple, bit serial processing elements
(PE’s). Cellular arrays are a special class of single-instruction
stream multiple-data stream (SIMD) machines having fixed-
interconnections.

3) General multiple-instruction stream multiple-data stream
(MIMD) machines with many general-purpose processors,
memories, and a flexible interconnection network. Such
machines can also be operated as SIMD machines.

As one moves4rom architectures of type 1 through type 3,
there is a significant decrease in speed. Focal plane archi-
tectures can compute a relatively complex computation (e.g.,
a 5 X 5 convolution) at the rate of 100 ns/pixel, while a cellu-
lar array such as CLIP 4 [101 and MIMD machines (such as
ZMOB [111) would operate at significantly lower data rates
(see Davis [121 for more details).

Balancing this decrease in processing efficiency is an in-
crease in processing generality. Focal plane architecture is
functionally quite rigid; it cannot, e.g., be used to apply
iterative algorithms to an image unless the number of itera-
tions is known a priori. Even then, it requires duplication
of circuitry (e.g., the median of median operation com-
puted by TI VLSI architecture [131). The cellular arrays are
more general, since their PE’s are ordinarily capable of com-
puting any Boolean function over a single bit plane of a point
and a simple function of its four or eight neighbors. How-
ever, for nonlogical operations, the PE’s are very difficult to
program due to their “low-level” instruction set. MIMD
machines composed of many microprocessors are still more
general, since not only are the microprocessors’ machine
instructions ordinarily quite powerful, but compilers are
available for translating high-level languages (such as Pascal or
Fortran) into the machine language of the microprocessors.
However, difficult problems in scheduling and sharing need
to be solved before MIMD machines become generally
available.

For the purposes of object tracking using iconic matching
techniques, focal-plane architectures would be most preferable
because they can support such computations at close to real-
time data rates. As one example of a “focal-plane architec-
ture” for convolutions, consider the approach suggested by
Texas Instruments (TI) [141 based on VLSI technologies.

In general, the correlation of a sequence X = { X i } E o with a
sequence of weights W = {Wi}T=o is defined by

n

j = o
C(i) = ~ j ~ [i + i l . (4)

where [.] denotes modulo m .
This is essentially the one-dimensional form of the unnor-

malized cross correlation discussed above. It is possible to
extend the design discussed the following to normalize C(i) by
zTZ0 X [i + j l , but the principle point of the design is the effi-
cient computation of C(i) . Now if we express X, as

1

xn = X n , b 2 b , x n , b E 1} (5 1
b=O

then by substituting (4) into (5) and reordering terms we can
obtain

r r n \

Thus C(i) can be computed using a total of about rn shifts and
adds. However, time can be saved by prestoring all values of

j = o

in a 2n by B , + logz (n) bit READ-ONLY memory (ROM)
where B , is the number of bits required to store the maxi-
mum Wi. Now, the computation of C(i) takes r + 1 table
look-ups in the memory, and r + 1 shifts and adds. This tech-
nique is called the ROM-accumulator (RAC) technique.

An advantage of TI’S VLSI design is that the dynamic range
of the convolution weights can be increased with only a small
increase in ROM. On the other hand, the VLSI approach is
impractical for large convolutions. Even a small, 10 X 10 con-
volution would require a ROM which is 2lo0 X (B, + logz n)
bits, which is clearly impossible. If one adopted the blocking
schemes suggested in [141 (i.e., essentially break the large
memory into several smaller memories and then combine
the results with additional circuitry), then the architecture
might become too slow. Note that one is also faced with the
formidable problem of loading the partial product memory
(which for image tracking could obviously not be constructed
with ROM). This requires both computing all the partial
products, and then storing them into memory. Such prob-
lems need to be faced before such architectures could be
applied to tracking problems. See [151 for an alternative
architecture based on charge-coupled devices.

An alternative to using special purpose architecture is to
design fast algorithms for computing the location of maximum
match. Although it is possible to use frequency domain tech-
niques, we will restrict our attention to space domain tech-
niques because they generalize to wider classes of match
functions.

Barnea and Silverman [161 introduced a class of fast algo-
rithms for image registration which avoided the comparison of
every point in FI with every point in F;. In the following, we
present a generalization of some of the ideas presented in [161
which involves representing the matching problem using state-
space representation techniques, and then searching for the
best match using an ordered search algorithm. For notational
convenience, we will develop the algorithm using only one-
dimensional pictures.

Let q(i) , 0 Q i Q m , be a sequence of numbers which repre-
sents a one-dimensional image and let p(i) , 0 Q i Q n, n < m
represent a one-dimensional object whose position in q we
want to detect. We say that the sequence p f {pi}?=o is an
initial sequence of a second sequence p t = { ~ i } p = ~ if

a) n Q n’ and
b) pi = pi , 0 Q i Q n .

Let M be any cumulative mismatch function for matching a
sequence p = against a sequence q = { q i } E o . M is
cumulativq iff when p = is an initial subsequence of
p t = {P:)?=,, M (P , q (j)) Q M(p’ , q(j)) . Here, M (P , d j)) will
be a difference measure that represents the dissimilarity of the
sequence p to the subsequence q j , * . . , q j + n -

AGGARWAL e t al.: DYNAMIC SCENE ANALYSIS 5 6 5

As an example, consider the mismatch function A defined as

so that A , is a cumulative mismatch measure.

let (t , j , M (p r , q(j))) where
The state-space, then, is defined as follows: A stare is a trip-

1) t indicates how long an initial subsequence of p has been

2) j is a position in q ,
3) p f is the initial subsequence of length t of p , and
4) M (p r , q(j)) is the dissimilarity of pr to 4(j) .

A start state is of the form (r , j , M (p r , q (j))) , where 1 Q
r < n and for each r , 1 Q j < (m - r) , while a goal state is one
for which r = n. Notice that the start state represents a situa-
tion where an initial subsequence of p has been compared to
q at position j , while a goal state represents the situation when
all of p has been compared to q starting at position j . If S =
(t , j , M (p f , q(j))) is a state, then the k-successor of S (denoted
o k (S)) is S' where

compared against q starting at position j ,

S' = (t + k, j , ~ (p t + ~ , q (j)))

i.e., S' is obtained by comparing k more points from p against
the subsequence of q beginning at j . If S, = O k (S , - l) , S,-l =
0 k (S , - 2) , * * e , S2 = O k (S l) , then S1, * * * , S, is a path from
S1 to S,. The cost of the path is the value of the dissimilarity
measure in state S, (which is also the maximum of the dis-
similarity measures for the set of states SI, . * * , S,); we will
also refer to this cost as the cost of S,. The objective, then, is
to find a minimum cost path between a start state and a goal
state. This can be accomplished by an ordered search algo-
rithm [171. The cumulat'lve nature of the mismatch measure
assures the admissibility of the algorithm-i.e., it is guaranteed
to find a minimum cost path.

The ordered search algorithm is defined as follows.
1) Put al l start states, (r , j , M(p', ~ (j))) , 0 Q j Q m - n, into

a set called OPEN.
2) Choose the state from OPEN with minimal dissimilarity

measure and delete it from OPEN. Let S = (t , j , M (p r , q(j)))
be this state.

3) If S is a goal state, then the best match of p to q occurs
at position j , and the algorithm halts. Otherwise, continue.

4) Compute O k (S) and add this new state to OPEN. Go to
Step 2.

A slight modification of the above algorithm, employed by
Barnea and Silverman [161, can lead to dramatic savings in

computation time; however, the algorithm would no longer
be admissible. The modification involves not putting into
OPEN any state (t , j , M (p t , q (j))) with M b ' , q (j))) T(t) ,
where T is a threshold function. Barnea and Silverman [161
discuss methods for computing a reasonable threshold func-
tion from the sequences p and q . We will not adopt this
modification in the example below.

As an example of the application of the algorithm, consider
Fig. 1. Fig. l(a) contains an image q and an object p . The
iterations of the ordered search algorithm are described in
Fig. l(b), using k = 1, r = 2 and dissimilarity measure A , the
sum of absolute differences. The example proceeds as follows.
With r = 2 , the initial subsequence of p of length 2 (i.e., 4 7)
is matched against the subsequence of length 2 in q starting at
each of the positions 0, 1, * * * , 5. For example, at position 3,
the mismatch is 14 - 3 1 + 17 - 2 I = 6. For each partial match a
state is entered into the set OPEN. The minimal cost state is

With k = 1, o k (S l) is obtained by adding the mismatch of
p 2 and q 3 to the cost of S1. This mismatch is 12 - 3 I = 1, so
that o k (S l) is the state S2 = (3, 1, 2) , indicating that the
initial subsequence of length 3 of p (i.e., 4 7 2) has been
matched to q 1 q 2 q 2 . This state, S 2 , is added to OPEN.

S2 is also the minimal cost state at iteration 2, with O k (S 2)
being the state S3 = (4, 1,4). Notice that even though S3 is
a final state, the algorithm does not terminate. For a final
state to be chosen by the algorithm it must be known to be
minimal over the current OPEN set, thus S3 must first be
placed in OPEN and its dissimilarity measure compared to the
measures of all states. At iteration 3 this comparison yields
the minimal cost state S4 = (2, 4, 3). o k (S 4) is the state
(3 , 4 , 6) , but at iteration 4 state S5 = (2 , 5 , 4) is chosen
arbitrarily from the minimal cost subset of OPEN, ((2, 5 ,4) ,
(2 ,0 ,4) , (4 , 1 ,4)} . We next choose (2 , 5 , 4) whose successor,
(3 , 5, 6), is thenplaced inOPEN. Then, at iteration 5, (2 , 0 , 4)
is taken from OPEN, and its successor, (3, 0, 9), is placed on
OPEN. Finally, at iteration 6 , goal state (4, 1,4) is chosen
from OPEN and the algorithm halts.

Although the ordered search algorithm will decrease the
number of comparisons of points in p with points in q , there
are two sources of overhead which might render the strategy
more costly than the direct approach.

1) The algorithm must maintain a sorted list of states repre-
senting partial matches of p to q.

2) If not enough primary storage is available to simulta-
neously maintain all of 4 , then the algorithm may need to page
pieces of q in and out when the subsequence of q associated
with the newly chosen state of Step 2 is found not to be in
the currently available storage. This 1 / 0 overhead can'severely
degrade the performance of the algorithm.

The computational cost of matching p against q can also be
reduced by employing a subtemplate-template matching
strategy [181. Here, one matches a piece, p' of p against 4 ,
and then matches the remainder of p only at those points in q
where the match of p' is sufficiently good (e.g., higher than
some threshold t if using a similarity measure). If p' has n'
points, n' < n, then the total amount of computation per-
formed by the subtemplate-template matching algorithm is

S = (2 , 1, 1).

w(t) = mn' + mnP

where P is the probability that the match of p' to q (j) has a
value greater than t for randomly chosen values of j . Note that
unlike the ordered search strategy, the subtemplate-template

566 PROCEEDINGS OF THE IEEE, VOL. 69, NO. 5 , MAY 1981

matching strategy is not guaranteed to find the best match
since there is a nonzero probability that the match of p’ to 4
at the position which maximizes the match of p to q will be
below the threshold t . Note that this false dismissal rate can
be kept arbitrarily close to the flase dismissal rate of matching
p to 4 in two ways:

1) lowering the threshold t for matching p f against q ;
2) increasing the size of the subtemplate p ’ .

Lowering the threshold, of course, will increase W (t) since
for t‘ < t , more points in 4 will match p ’ . If t is made too
low, then it is possible for W (t) to be greater than mn, which
is clearly undesirable. Similarly, increasing the size of p f may
also increase W (t) . Vanderbrug and Rosenfeld [181 discuss
choices of n’ and t which minimize W (t) while keeping the
overall error rate below threshold.

A related strategy to subtemplate-template matching is
coarse-fine template matching [191. Here, one f i t matches
an averaged and sampled version p’ of p against a similarly
averaged and sampled version q’ of 4 . Positions in 4’ which
are good matches to p ’ are then used to guide the application
of p to q. Again, there are tradeoffs between reliability and
two factors-the size of p’ relative to p and the threshold used
in matching p‘ to 4’.

The coarse-fine matching strategy can be further generalized
to matching in a pyramid image representation [201, [21 1.
A pyramid is a stack of regularly reduced resolution versions
of an image. Tanimoto and Pavlidis [22], e.g., describe an
edge detection procedure which operates in a pyramid.

The applicability of these correlation-based matching pro-
cedures is limited by a number of factors. The two most im-
portant of these for object tracking are the inability to deal
with objects whose orientations in the image plane change
from frame to frame and the inability to match given only
partial information. The structural techniques discussed in
Section I11 are designed to overcome these problems.

111. STRUCTURAL MATCHING TECHNIQUES
In this section we shall discuss methods which establish the

correspondence between points of interest at consecutive time
instances using structural models or domain constraints to
guide the process. The points of interest are assumed to be
derived from the images by low-level operators which can
detect specified components and determine the locations and
descriptive feature values of those components. Each such
component, together with its features will be referred to as a

token. For example, a simple 3 X 3 edge operator with local
nonmaxima suppression could be used to form a token repre-
senting an edge which is considered to be centered at a given
pixel with a specific orientation and contrast. The function of
the matching process is thus to construct a mapping from the
set of tokens of one image to the set of tokens of a second
image. Clearly, the methods suitable for establishing this
mapping depend on the particular attributes retained with
the tokens.

However, intertoken constraints imposed either by structural
models or the scene domain are also important. Object models
can be derived from two primary sources. General descriptive
models of the objects or object types expected to occur in the
scene can be provided to the analysis system before processing
is initiated. In this case the tokens in each image are matched
against the descriptive features contained in the models. For a
given token in one image the corresponding token in the
preceding image is identified as that token which matched the
same model feature as the given token. Models can also be
derived from the images as they are processed. In this case
general information about object formation is used to group
the tokens in an image into structures which are a first esti-
mate of the object models and provide constraints useful for
establishing the correspondence to the tokens in another
image. Such scene domain constraints can also be applied to
individual tokens, usually in the form of limits imposed on the
area of search for matching tokens.

An early system which employed motion measurements for
scene segmentation (Potter [231) formed tokens referred to as
“cross-shaped templates.” The attributes of these tokens were
the distances (horizontal and vertical) from a given pixel to the
nearest gray level discontinuity. To match a given token of
this sort from one image a heuristic search of the second image
was performed, starting at the image location of the original
token. The search expanded outward from that starting posi-
tion and continued until either a similarity measure over the
token attributes exceeded a threshold, Le., a match was found,
or a preset search limit was reached. The displacement be-
tween the locations of matched tokens constituted the motion
measurement for the tokens of the first image. The segmen-
tation of that image was then performed using the constraint
that tokens with the same motion measurements were part of
the same object.

Two major problems arose for the system. First, the attri-
butes associated with the tokens limited the allowable object
motions to be simple translations in the image plane. Second,

AGGARWAL et al.: DYNAMIC SCENE ANALYSIS 561

the system attempted to form a token for every pixel in the
image plane, thereby incurring extensive computation in the
search phase. By considering the distance from each object
boundary point, i.e., the gray level discontinuities used in
[23], to some central position, a model of the object to be
tracked can be used in conjunction with a matching technique
to overcome these problems. The matching technique is a
generalization of the Hough transform (Duda and Hart [241)
to arbitrary shapes as encoded in boundary list representations
(Ballard [25], Davis and Yam [26]) and will be discussed in
the following. We will first describe position invariant match-
ing, and then describe generalizations to orientation and scale
invariant matching.

Let B = {(Xi, Yi)}?=, be a list of boundary points for the
shape to be tracked. B might be the set of edge locations in an
image window detected by an “interest operator” at time r l .
Let p = (X, Y) be any point (in practice, a central point such
as the centroid of B will be computationally convenient to use
as p) . Then the Hough-representation of Busing p , H(B, p) ,
is the sequence of vectors {d i }?=, , where dxi = X - Xi and

Now, suppose we are given an image f, which contains an
dyi = Y - Yi. Fig. 2. First image of pair to be matched.

instance of the shape whose boundary is described by B . Here,
f would be the image acquired at time t z . A second array h ,
which is an array of accumulators that is registered with f, will
be used to compute the transform o f f with respect to H(B, p) .
After the transform is computed, points in h with high values
will correspond to hypothetical locations of p in f. Of course,
once the location of p is known, the instance of B in f can be
recovered using H(B, p) . The array h will be larger than the
array o f f , since if the shape is only partly contained in f, the
point p might lie outside off.

The transform h is computed by first applying an edge de-
tector to f to produce an edge map e of f . Each edge ei in e
is a potential element of the set B . Although contrast and
orientation information may limit the subset of B to which
any ei may correspond, there is, in general, no way to deter-
mine the element of B to which any ei corresponds without
considering the positions of all the other ei. Therefore, each
edge element ei is compared to each vector in H(B, p) to com-
pute a possible location for p , and that location is incre-
mented in the transform h . That is, h is computed by the
following simple algorithm originally reported in [251 :

Algorithm MATCH 1 :
For each ei = (Xi, Yi) in e do

For each d i = (dxi , dyi) in H(B, p) do
h(Xi + dxj, Yi + dyi) : =

h(Xi , + dxi , Yi + d y j) + 1.

Notice that the result of applying this algorithm is exactly
the same as correlating a binary image representation of B
with the binary edge map e (this was originally pointed out by
Sklansky [27]). The correlation, however, is based on con-
sidering all points in h as potential locations for p , and then
for each location counting the number of appropriately posi-
tioned (according to H(B, p)) edges in e. The advantage of the
transform algorithm is computational efficiency. If h is an
r X s array then to compute h using a standard correlation
algorithm requires O(r X s X n) operations-i.e., for each of
r X s potential locations for p , we must check the n locations
of possible edge points determined by H(B, p) . Algorithm
MATCH 1, on the other hand, requires O(le I X n) operations,
where l e I is the number of edges detected in f. Since, in prac-

Fig. 3. Second image of pair to be matched.

fice, edges account for no more than 5-10 percent of any
image, algorithm MATCH 1 will result in speedups of 10 to 20
over conventional correlation procedures. As an example of
this process, consider the two aerial photographs contained in
Figs. 2 and 3. The objects in these images appear to move
toward the top of the image. Fig. 4 shows the edge points
found in Fig. 2, along with points of interest (marked by
letters) derived by grouping edge points into sets, one set per
point of interest. A Hough-representation is formed for the
set of edge points associated with each point of interest using
the location indicated by the letter as the central point. There
are ten points of interest, i.e., tokens, in Fig. 4. For each of
these tokens a Hough transformation relative to the edge
points found in the second image is formed. Fig. 5 shows the
edge points for the second image in addition to the positions
of the five highest peaks in each transform. Intertoken con-
straints were then employed to determine the “best” matches.
Note that two tokens, G and I , moved off the image and

568 PROCEEDINGS OF THE IEEE, VOL. 69, NO. 5, MAY 1981

I

ge il

*
..
. .

. . . .

. *.
.. . .

a : -
.

.
. 1 : *.

.
* _ ! _. *

.
. * * e : : *

.
.... .. .* : : ,

: i :*
... . . . , ..
.
: I I

. ,
. . I

....

.

.. * *
* ::! : I

..... :E - * . :*::: ! :.
.
. .

Fig. 4. Edge points and points of interest derived from the ima
Ftg. 2.

Fig. 6. Resulting matched points of interest for the image in Fig. 3. n

Algorithm MATCH 2 :
For each ei = (Xi, Yi) in e do

For each di in H(B, p) do

For 6 = 0 , 2 n , by dB do begin
Ri = 4-
hx = Ri * COS 6 + X i ;
h y = R i * S i n 6 + Y i ;
W X , hy) = Nh, , h y) + 1 ;

end.

Unlike algorithm MATCH 1 where the results were identical
to what could have been obtained by correlating the binary
image e with a binary image representation of B , the results of
applying algorithm MATCH 2 are not identical to what would
be obtained by individually correlating m = 2n/d6 rotated
versions of H with e, and then choosing the maximum match
amongst the m correlation planes. Instead, algorithm MATCH
2 adds the rn correlation planes together to obtain a single
plane (h) . The position in this plane having maximum value
is then interpreted as the location of B .

Notice that if prior information is available concerning the
orientation of the object in the frame, then this information
can be easily taken advantage of by the algorithm. One simply
modifies the bounds on the inner FOR loop so that only cir-
cular arcs in h , rather than entire circles, are incremented. For
example, in tracking vehicles moving along roads, one can
ordinarily assume that between the successive frames the
vehicle will not make a turn sharper than n / 2 , since roads do
not bend that quickly.

Although algorithm MATCH 2 can detect an arbitrarily
oriented version of a shape, it does not compute the orienta-
tion of the shape. This could be done by m a i n w g m
separate correlation planes and applying algorithm MATCH 1
to m rotated versions of H(B, p) . In practice, however, this
approach has unacceptable storage and time requirements.

Instead it is possible to construct a second transform of B ,
but with respect to a different point p’ . If (i, j) is the point
in the transform of H (B , p) having maximal value, and if

. .
..

. - B I
.. *. II . r: :.

..
I .! ! *.

9 . .

.
. 1 *

* I

. *.
,..e.‘ :

. i.1 II :.: .. I.
: :; if :

.
F’ :

. . . ‘..I :xi . i ..
: **IE *.: * :c:..:,-.s : ! *E i *::

..
.

.

Fig. 5. Edge points from the image in Fig. 3, and the locations of
possible matches to the points of interest from Fig. 4.

another token J disappeared due to structural changes in the
image. In these three cases the “best” match was determined
to be no match.

In the preceding, we assumed that the orientation of B in f
was known. Suppose, on the contrary, that it is not known
(this can occur, e.g., while tracking a vehicle, from above,
which is moving along an unpredictable path). In this case,
when we hypothesize that a particular el corresponds to some
dj , the strongest conclusion we can draw is that if el were
indeed di , then p must lie somewhere on the circle of radius
Ri = centered at el. The following algorithm
accomplishes rotation invariant matching.

AGGARWAL et al.: DYNAMIC SCENE ANALYSIS 569

(i’, j ’) is the point in the transform of H (B , p ’) having max-
imal value (notice that these values must, in principle, be
identical), then the direction from (i , j) to (i ‘ , j ‘) gives the
direction from p to p’ in f. Points p and p’ should be cho-
sen to be sufficiently far apart so that small errors in the
locations of the maxima in the transforms h of H (B , p) and
h’ of H (B , p ’) do not lead to large errors in the computed
orientation of B .

Notice that the algorithms can also be modified in a straight-
forward way to deal with a limited range of scale informa-
tion. Suppose, e.g., it is known that the object in the image is
S times the size of the model, with S E [S,, Sz] (note SI < S2
and 0 <SI). Then in algorithm MATCH 1 rather than just
incrementing a single point at distance d =- from
an edge point, one marks a l l points in direction tan-’ (dy/!,)
and with distances d’ E [Sld, Szd] . For rotation invanant
matching, rather than incrementing a circle (or circular arcs
if constraints on the orientation are available) one increments
a ring of inner radius Sld and outer radius S2d (or the inter-
section of the ring with wedges). Again, different correlation
planes can be maintained for different values of the scale, but
this increases the storage and computational requirements of
the matching algorithms. Note that this idea was employed
by Davis [28] to detect circles of various sizes using Hough-
transform techniques.

Boundary descriptions of objects were also employed by
the system discussed in Martin and Aggamal 1291. This sys-
tem extracted simple closed curves representing figures with
curvilinear boundaries from each image in a time ordered
sequence. In this case the input was restricted so that the
figures independently moved in planes parallel to the image
plane. The figures were planar with opaque homogeneous
shading. This meant that when the figures moved so as to
occlude one another the boundaries merged into apparently
single figures. The main task of the system was thus to derive
descriptions of the actual figure boundaries which were con-
stituents of the apparent figures in the images.

The fact that a given figure in the image might be composed
of boundary points from several actual figures precluded the
matching of the entire boundary between two images. Instead
the boundaries were broken into sets of tokens with each
token representing a boundary section which approximated
a straight line or a circular arc. The token attributes were the
length and curvature of the represented arc. The matching
process began by finding pairs of highly similar tokens, re-
ferred to as “seeds.” The remainder of the matching process
made use of the ordering of the tokens on the figure bound-
aries to constrain the segment “growing” algorithm that was
applied to the already matched “seeds.”

This process was able to detect extended boundary segments
having the same shape in consecutive images. Since the actual
figures were assumed to be rigid, a pair of matched segments
could be interpreted as being two views of a portion of an
actual object boundary. Thus the boundary shapes were used
to form the correspondence which in turn provided motion
measurements for each matched segment. The final grouping
into actual objects was based on the constraint that segments
exhibiting similar motions were sections of a single rigid
object.

This latter constraint is quite important and is the basis of
the object interpretation in most current motion analysis
systems. However, for the correspondence processes in the
systems discussed so far in this section, the matching has been

based on token attributes not related to motion. In the re-
mainder of this section we will illustrate how the motion or
the expected motion of ‘the scene components can be used
in forming the correspondence.

Endlich et al. [301 did not incorporate an explicit movement
expectation but did assume that most of the tokens within
arbitrarily chosen subimages exhibited similar velocities.
Under this assumption their system formed a Correspondence
which specified a consistent velocity for the largest number
of tokens in a subimage. The tokens were referred to as
“brightness centers” and had an intensity attribute as well as
an image location. The procedure used by the system was to
iteratively refine the estimate of the representative velocity
and to use the estimated velocity to constrain the possible
matches for each token. The process was iterated until each
token had no more than one possible match.

The velocities determined for each subimage were then
merged together to yield a velocity map which represented
the cloud motions in the satellite images processed by this
system. For more general image sequences, however, the
arbitrary partitioning of the image into subimages could be
a severe problem because the presence of two or more inde-
pendently moving scene components in a given subimage
would invalidate the assumption of a representative velocity
for that subimage. In most cases it will be impossible to
know a priori how to partition the image so that each sub-
image contains only one scene component. One might,
however, make use of the localized motion consistency con-
straint in a network of competing hypotheses, much like
the consistent labeling procedures of Rosenfeld et al. [3 1] .

Barnard and Thompson [321 accomplished this by locating
the prominent (i.e., most likely matchable) features in each
of a pair of images with an “interest operator.” Associated
with the operator was a similarity measure which was used
both to initialize the “probabilities” for the hypothesized
matches at the tokens and to update those “probabilities”
at each iteration of the refining process. The network upon
which this refining process operated was created from the
tokens in the f i t of the pair of images by establishing a
node for each token and connections between all nodes
whose tokens were within a preset distance of each other.
At each node a “label” set was formed containing an element
for each possible match of the associated token. The labels
were ordered pairs of -the disparity, in the x and y directions
of the image plane, between the location of the token of the
node and the location of each token within a given radius of
that position in the second image of the pair.

In addition to the possible match labels, there was included
a special label specifying that no match could be found for the
given token. The inclusion of this special label is indicative of
an important concept for motion analysis systems: the track-
ing procedures must be robust enough to continue functioning
properly when some of the features of interest, i.e., the tokens
currently being tracked, are no longer detectable in the image.
A particular feature may not appear in a given image of the
sequence for several reasons: the feature might become oc-
cluded by scene components of the foreground; the image
characteristics might for some reason, e.g., illumination
changes, not remain within the tolerances of the interest
operator; or the feature may move beyond the view of the
imaging device.

The motion consistency constraint of Barnard and Thompson
1321 was propagated throughout the network by increasing

570 PROCEEDINGS OF THE IEEE, VOL. 69, NO. 5, MAY 1981

the probability assigned to a given label at a specified node by
an amount proportional to the sum of the probabilities of the
similar labels at connected nodes. This label r e f i i g process
could be iterated until the network stabilized or until every
node had a clearly defined “most likely” label. However, i n ,
practice it was iterated ten times, leaving a few ambiguous
labelings.

A network of a different sort was proposed by Ullman [51.
Here, a node was associated with each token in the pair of
consecutive frames. For each token in one frame the set of
possible matches in the other frame was determined and
connections were established between the node for the given
token and the nodes for the tokens in the matching set. This
network was used to calculate the correspondence which
minimized a mapping cost function. The calculation was to
be performed by simple processors, one attached to every
node and connection in the network. Each node processor
communicated with the processors attached to the connections
incident on that node, while each connection processor com-
municated with the Processors at the two nodes which ter-
minated the connection. Thus the processors could be par-
titioned into three disjoint sets: one set associated with the
tokens of the first frame; another set related to the tokens
in the second frame; and the fiial set representing possible
matches between two tokens, one from each frame.
All processors computed only simple functions of values

stored at the neighboring processors and used those func-
tions to update their own values. This updating procedure
was iterated until the values in the network stabilized, at
which time the connection processors had values of either
1 or 0, only. The resulting correspondence was then specified
by the set of connection processors that had a value of 1,
i.e., a given token of the first frame was mapped to a token
of the second frame if the nodes for those tokens were con-
nected in the network and the processor attached to that
connection had a value of 1. Thus the specified correspon-
dence was the mapping which yielded the minimal cost.

The cost function proposed was directly related to the
probability distribution of the velocity of the tokens as
measured in the images. Minimizing this cost function was
shown by Ullman [51 to be optimal under the assumption
that the movement of each token was independent of the
movements of the other tokens. It was also argued that
one-to-one mappings should be preferred and then shown
that a simple modification to the cost function would effect
this preference.

As the time between frames increased and the velocities of
the tokens decreased, the mapping also tended to IIlinimize
the total distance moved by all tokens in the scene. This was
the case in which the nearest neighbor match of the tokens
tended to be a one-to-one mapping. At higher velocities
nearest neighbor matching would result in numerous “splits”
and “fusions,” i.e., one-to-many and many-to-one mappings,
while the “optimal” cost minimizing mapping would retain
its preference for one-to-one mappings. In this way, although
the nearest neighbor match might not be the desired corre-
spondence, it could be used as the initial estimate for the
minimizing process which derives the “optimal” mapping.
Thus the network would be constructed by connecting the
node of a given token in one frame to the N nodes associated
with the N nearest tokens from the other frame. It should
be noted that there is no mechanism for adding connections
to the network once the minimization process has begun,

so the -initial set of possible matches would have to contain
the “correct” one.

There were two major problems with the overall scheme
proposed in Ullman [SI for forming the correspondence
between frames. The first was similar to the problem of
subimage selection of Endlich et al. [30], in that the cost
function used a single distribution for the velocities. This
was justified by the independence of movement assumption.
Clearly, the validity of this assumption would be in doubt if
several tokens were established for each object in the scene.
In that case the motions of the tokens associated with a par-
ticular object would be interdependent and directly related
to the overall movement of the object. The second problem
was the requirement that the correspondence be specified
by a “cover,” i.e., every token in both frames was matched.
Note that for the examples studied in Ullman [5] this was
not a problem because the images were of dot patterns in
which occlusion was rare. However, for general scenes the
features that give rise to tokens will frequently disappear
and appear necessitating the no-match possibility, as discussed
earlier in this section. A solution to this problem might be
to introduce into the original network two special nodes
for which the connection would mean “no match.” Initially all
the nodes for a given frame would be connected to one of the
special nodes and all the nodes for the other frame would be
connected to the remaining special node. The difficulty
here would be determining the cost associated with the no
match connection as it relates to the velocity distribution
and the one-to-one mapping preference.

The expected velocity of a token was also used in the
correspondence forming process of the system described in
Rashid [81. Again, the input was a sequence of images of
dot patterns with a token created for each dot. In this case,
however, each token retained its own expected velocity
parameter. The expectations were used to determine the
predicted locations for the tokens from one frame. Those
computed locations were then matched against the tokens
in the next frame. The desired Correspondence was the
one-to-one mapping from the set of predicted locations
to the set of tokens for the new frame which minimized
the sum of all the distances between the predicted locations
and their matched tokens.

The minimization was not computed by a network of
simple processors. Instead, a Voronoi construction (Shamos
[33]) was used to provide an efficient implementation. For
a set of N locations a Voronoi construction tessillates the
plane into N polygons (some possibly infinite in size). Each
polygon is associated with exactly one of the locations in the
set and bounds the area containing all the points for which
the associated location is the closest element of the set. Thus
to determine the closest location to a point, one need only ask
which polygon of the Voronoi construction contains that
point. In Rashid [8] a Voronoi construction was performed
for the set of predicted locations from a given frame, then
each token of the new frame was matched to the closest pre-
dicted location by finding which polygon included the token.
If more than one token was within a single polygon then the
token nearest to the associated predicted location was chosen
as the match for that location. The matched location was
deleted from the set and a new Voronoi construction was
computed. The efficiency lies in the fact that given a Voronoi
construction for N points, computing a new construction
using N-1 of those points is linear in the number of points.

AGGARWAL et al . : DYNAMIC SCENE ANALYSIS

The problems that occur with this scheme are twofold and
concern the initialization and updating of the velocity pre-
diction functions. First, since the prediction is used to form
the correspondence, the mapping from the first frame of the
sequence to the second frame must depend on expectations
supplied to the system or on some default expectations.
The validity of these initial expectations is important because
an incorrect yet consistent mapping between the fmt pair of
frames will generate erroneous predictions for mapping the
third frame, and so on.

The second problem might occur when a token changes
its velocity. This was partially accounted for in Rashid [8]
by making the expected velocity be the average of the two
velocities measured from the immediately previous frames.
This works well if the velocity “varies smoothly,” as assumed
in [8]. However, abrupt changes in velocity would invalidate
the prediction and leave the system with the problem of deter-
mining an initial prediction again. These are crucial points for
any predictive scheme: the prediction mechanism must have
an initialization phase, a normal updating phase, and an error
detection and correction phase.

A similar sort of predictive analysis was used in the top level
of the hierarchical matching system described in Roach and
Aggarwal [34]. The input domain for this system was that of
images of polyhedra moving in three-dimensional space. The
images were processed to yield the edges of the visible planar
surfaces, with line and vertex descriptions derived from these
extracted edges. These descriptions were then segmented into
preliminary object interpretations based on general domain
constraints. The domain, however, did allow ambiguities
which generated multiple interpretations of given line-vertex
groups. These interpretations were maintained by the system
until conclusive evidence was obtained to decide which was
correct.

The correspondence between consecutive images was estab-
lished by a hierarchical system which invoked the lower
level processes only as the upper levels failed. The top level
process calculated a centroid for each object interpretation
and using information from preceding images determined
a predicted location for every centroid. These predictions
were then matched by a nearest neighbor rule to the centroids
found in the succeeding image. As long as the predictions
remained valid this level was sufficient, otherwise the system
invoked the second level matching process.

At the second level, coarse descriptions of relative object
positions, e.g., object A is to the left and below object B ,
were used to match object interpretations. The coarseness
of the feature ensured that the description would remain
constant for fairly long intervals of time. However, upon
failure, the third and lowest level matching process was
activated. This process matched object interpretations based
on the relative positions of the polygonal faces in each inter-
pretation. In this manner several different levels of processes
used information from various object descriptions and rela-
tionships to establish the correspondence between images.

This section has described several methods for operating
upon points of interest extracted or abstracted from the gray
level information in the images to form an interimage cor-
respondence. These methods employed scene domain con-
straints, structural information from object models, constancy
features of the moving objects, and predictive analysis based
on movement expectations. The complexity of the move-
ments analyzable by the methods is greater than those of

571

Section 11, while, the analysis requires the images to contain
distinct and discrete features from which the tokens can be
created.

IV. SUMMARY
We have discussed procedures for solving the correspondence

problem based on both iconic and structural representations
of the image parts to be matched from frame to frame. The
iconic representations lead to fast matching algorithms, but
are not general enough to be applied to all correspondence
problems. Matching algorithms based on structural repre-
sentations, while ordinarily more demanding computationally
than iconic-based algorithms, can tolerate a wider variety of
pattern transformations (e.g., rotations, scale changes, etc.)

The correspondence problem, is, of course only one in a
sequence of problems that must be solved in dynamic scene
analysis. The principal other problems, which this survey did
not address, include the detection of motion, the grouping
of moving parts into objects, and the recognition and tracking
of those objects from frame to frame.

REFERENCES

of cloud pattern motions from geosynchronous satellite image
J. A. Leese, C. S. Novak, and V. R. Taylor, “The determination

data,” Pattern Recognition, vol. 2, pp. 279-292, 1970.
J . F. Schouten, “Subjective stroboscopy and a model of visual

and Visual Form, W. Wathen-Dunn, Ed. Cambridge, MA: M.I.T.
movement detectors,” in Models for the Perception of Speech

J. Y. Lettvin, H. E. Maturana, W. S. McCulloch, and W. H. Pitts,
Press, 1967.

“What the frog’s eye tells the frog’s brain,” Proc. IRE, vol. 47,

D. H. Hubel and T. N. Wlesel, “Receptive fields in the cat’s
striate cortex,”J. Physiol., vol. 148, 1959.
S. Ullman, The Interpretation o f Visual Motion. Cambridge,
MA: M.I.T. Press, 1979.
J . W. Roach and J . K. Agganval, “On the ambiguity of three-
dimensional analysis of a moving object from its images,”
WCATVI, pp. 46-47, 1979; and “Determining the movement of
objects from a sequence of images,” ZEEE Trans. Pattern Anal.
Mach. Intel., vol. PAMI-2, pp. 554-562, 1980.
J. Webb, “Static analysis of moving jointed objects,” in Proc.
1st Annu. Nat. Con5 Artificial Intelligence (Stanford, CA),

R. Rashid, “Lights: A study in motion,” in Proc. Image Under-
standing Workshop (Los Angeles, CA), pp. 57-68, 1979.

Academic Press, 1976.
A. Rosenfeld and A. Kak, Digital Picture Processing. New York:

M. Duff, “CLIP 4: A large integrated circuit array parallel pro-

pp. 1940-1951, 1959.

PP. 35-37, 1980.

I

cessor,” in Proc. 3rd Znt. Joint Con$ Puttern Rec&-ition (Coro-
nado, CA), pp. 728-733, 1976; and “Towards a system for the
interpretation of moving light displays,” IEEE Trans. Pattern
Anal. Mach. Intel., vol. PAMI-2, pp. 574-581, 1980.

1 1 1 C. Rieger, “ZMOB: A mob of 256 cooperative ZSOA-based micro-
processors,” in Proc. Image Understanding Conf. (Los Angeles,

121 L. Davis, “Computer architectures for image processing,” pre-
sented at the IEEE Workshop on Picture Data Description and
Management, Asilomar, CA, 1980.

131 W. Eversole, D. Mayer, F. Frazec, and T. Cheek, Jr., “Investiga-
tion of VLSI technologies for image processing,” in R o c . Image
Understunding Workshop (Palo Alto, CA), pp. 159-163, Apr.
1979.

141 W. Eversole, D. Mayer, F. Frazec, and T. Cheek, Jr., “Investiga-
tion of VLSI technologies for image processing,” in Proc. Image
Understanding Workshop (Los Angeles, CA), pp. 10-14, Nov.
1979.

CA), PP. 25-30, 1979.

[151 G. Nudd, S. Fouse, T. Nussmeier, and P. Nygaard, “Development
of custom-designed integrated circuits for image understanding,”
in R o c . Image Understanding Workshop (Los Angeles, CA),

[161 D. Barnea and H. Silverman, “A class of algorithms for fast digital
image registration,” ZEEE Trans. Comput., vol. C-21, pp. 179-

-. . ..

PP. 1-9, NOV. 1979.

186, 1972.
[171 N. Nilsson, Artificial Intelligence. CA: Tioga Press, 1980.
[181 G. Vanderbrug and A. Rosenfeld, “Two-stage template match-

ing,”ZEEE Trans. Cornput., vol. C-26, pp. 384-393, 1977.

572 PROCEEDINGS OF THE IEEE, VOL. 69, NO. 5 , MAY 1981

-
Cybern., vol. SMC-7, pp. 104-107, 1977,

, “Coarse-fine template matching,’’ IEEE Trans. Syst., Man,

A. Klinger and C. Dyer, “Experiments in picture representation
with regular decomposition,’’ Comput. Graphics and Image Pro-
cessing, vol. 5 , pp. 68-105, 1976.
T. Pavlidis, Structural Pattern Recognition. New York: Springer-
Verlag, 1978.
S. Tanimoto and T. Pavlidis, “A hierarchical data structure for
picture processing,” Comput. Graphics and Image Processing,

with a cross-shaped template,” in 4IJCAI, pp. 303-308, 1975.
J. L. Potter, “Scene segmentation by velocity measurements

R. 0. Duda and P. E. Hart, “Use of the Hough transformation
to detect lines and curves in pictures,” Commun. ACM, vol. 19,

trary shapes,” TR-55, Computer Sciences Dep., Univ. Rochester,
D. H. Ballard, “Generalibng the Hough transform to detect arbi-

Oct. 1979, Pattern Recognition, t o be published.

tion for shape recognition,” TR-134, Dep. Computer Sciences,
L. S. Davis and S. Yam, “A generalized Hough-like transforma-

J. Sklansky, “On the Hough technique for curve detection,”
Univ. Texas, Austin, Feb. 1980.

VOl. 4, pp. 104-119, 1975.

PP. 73-83,1976.

281 L. Davis, “Computing the spatial structure of cellular textures,”
IEEE Trans. Comput., vol. C-27, pp. 923-926, July 1978.

Comput. Graphics and Image Processing, vol. 9, pp. 111-122,
1979.

291 W. N. Martin and J. K. Agganval, “Computer analysis of dy-
namic scenes containing curvilinear figures,” Pattern Recog

301 R. M. Endlich, D. E. Wolf, D. J. Hall, and k E. Brain, “Use of
nition,vol. 11, pp. 169-178, 1979.

a pattern recognition technique for determining cloud motions
from sequences of satellite photographs,” J. Appl. Metereol.,

31] A. Rosenfeld, R. Hummel, and S. W. Zucker, “Scene labelling
by relaxation operations,” IEEE Trans. Syst., Man, Cybern.,

V O ~ . 10, PP. 105-117, 1971.

VOI. SMC-6, PP. 420-433, 1976.
[321 S. T. Barnard and W. B. Thompson, “Disparity analysis of images,”

IEEE Trans. Pattern Analysis Machine Intel., vol. PAMI-2, pp.

[331 M. Shamos, “Closest-point problems,” in Proc. 16th Annu. Symp.
Foundationsof ComputerScience (ACM), pp. 151-162, 1975.

[3 4] J. W. Roach and J. K. Aggarwal, “Computer tracking of objects
moving in space,” IEEE Trans. Pattern Analysis Machine Intel.,

333-340, 1980.

VOI. PAMI-1, PP. 127-134, 1979.

Invited Paper

Absrtract-Research is beginning to uncover fundamental computa-
tional principles underlying vision that apply e q d y to artificial and
natural systems. These principles provide insights into the limitations
of euly machine vision systems and lay a foundation for building
future systems capable of high performance in a broad range of visual
domains.

We present this emerging computational view of visual perception,
discuss some early work in the field in its context, and put forward
current thoughts on the overall organization and operation of a general-
purpose computer vision system, synthesizing recent theoretical and
experimental results.

I . INTRODUCTION s IGNIFICANT progress has been made in recent years on
practical applications of machine vision. Systems have
been developed that achieve useful levels of performance

on complex real imagery in tasks such as inspection of indus-
trial parts [11, [21, interpretation of aerial imagery [3] , and

Manuscript received July 3, 1980; revised November 13, 1980. This
paper was begun at SRI with support from NSF, DARPA and NASA,
and was completed at Fairchild.

The authors were with the Artificial Intelligence Center. SRI Interna-
tional, Menlo Park, CA. Thev are now with Fairchild Research Labora-
tories, Palo Alto, CA 94304.

analysis of chest X-rays [4]. Virtually all such systems are
special purpose, being heavily dependent on domain-specific
constraints and techniques. For example, industrial vision
systems usually require high contrast to obtain binary images
and use overhead cameras t o minimize variations in object
appearance. Such domain specificity makes each new applica-
tion expensive and time consuming to develop. There is thus
a clear need for computer vision systems capable of dealing
with less predictable and less structured scenes.

Developing general-purpose computer vision systems has
proved surprisingly difficult and complex. This has been
particularly frustrating for vision researchers, who daily
experience the apparent ease and spontaneity of human
perception. Research in the last few years, however, Has pro-
vided new insights into the computational nature of vision
that could lead to systems capable of high performance in a
broad range of visual domains. We present here an emerging
view of vision as a computational process, discuss some of the
early work in computer vision that led to this view, and put
forward a synthesis of recent theoretical and experimental
results in the form of a putative design for a general-purpose
vision system.

0018-9219/81/0S00-0S72$00.75 0 1981 IEEE

