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Correspondence  Processes- m ;  Dynamic Scene 
Analysis 
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Invited Paper 

Abstmct-One  of  the fundamental  problems  in  dynamic  scene analy- 
sis is the tracking of objects from  frame to frame. A general  approach 
to tracking is to establish correspondences  between  points, or sets of 
points,  between  frames  and  then  group  the sets into objects based upon 
similarity of motion. This paper will focus  on  processes  for  establish- 
ing  the  correspondence  between sets of points in  successive  frames. A 
succession  of  correspondence  processes are discussed, based on the 
factors which contribute to the  complexity of the  correspondence 
problem. 

I. INTRODUCTION 
OMPUTATIONAL models for  the analysis of time se- 
quences of images of dynamic scenes are  crucial for  the 
solution of many image understanding problems. For 

example,  in  meteorology, the  automatic prediction of frontal 
positions from satellite images of cloud cover requires that  the 
movements of clouds  be  tracked from image to image [ 1 1. In 
fact, meteorological  applications imparted  the initial impetus 
to research in motion analysis. The  spectrum of applications 
has widened dramatically  in the past several years to include 
biomedicine,  tactical and strategic  military  applications and 
industrial automation. In addition to this  variety of real-world 
problems, models for  motion analysis are of fundamental 
importance to  our  understanding of the  human visual system. 
Mammalian visual systems not  only  contain  “software”  for 
motion analysis [2] ,  but  apparently also include  “hardware” 
for  the  detection of moving objects in the visual field [ 31, [4] .  

Perhaps the most prevalent problem  in motion analysis is 
the tracking of objects  from frame to frame.  Tracking is a 
prerequisite for  computing  either  the  motion of the  object 
or a  description of how  the object is changing. A general 
approach  to tracking is to establish  correspondences between 
points,  or sets of points,  in successive frames  and then  to 
group those sets into  objects based on similarity of motion. 
Such grouping operations are often based on  the  assumption 
that  the objects are rigid or  that  they are  articulated  (i.e., 
jointed)  but composed of  rigid parts. Such assumptions im- 
pose structural  constraints  on  the relative positions of object 
points, which in turn impose constraints  on  the two-dimen- 
sional pattern of positions  projected by those  points  onto  the 
image plane. For  example, Ullman [ 51 and  Roach and Aggar- 
wal [6] use the rigidity  assumption to  compute  the  three- 
dimensional structure of moving objects  from multiple views 
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of the  object in motion, while Webb [7]  and Rashid [8] dis- 
cuss how  jointed  objects may  be  analyzed. It is important  to 
note  that in  a great number of applications the  objects  in mo- 
tion can be treated as two-dimensional so that grouping  opera- 
tions  and accompanying computational models of motion can 
be specified solely on  the basis of changes in image coordinates. 

This  paper will focus  attention  on processes for establishing 
the correspondence  between  sets of points in successive frames. 
It should be pointed  out  that these  correspondence processes 
have applications to  other problems in image understanding 
besides motion analysis-e.g., stereopsis, change detection, 
etc. We will not consider the  subsequent grouping  procedures 
which establish structure  and  motion  from such  correspon- 
dences. Discussions of those problems can be found in 
[SI, [61. 

There  are a .number of factors- which contribute  towards 
making the correspondence  problem quite  difficult;  the 
presence or absence of such factors determines the  procedures 
which can be  applied to solve any specific correspondence 
problem. First,  the  types of transformations  that  objects can 
be  subject to from frame to frame  must  be  considered. Can 
the  objects change their  orientation in the field of view, or 
their size? Can their shape  change, and if so, is any  prior in- 
formation available which constrains  such changes? (This is 
especially important  for tracking  clouds, which change shape, 
sometimes dramatically, from  frame to frame.) 

Objects  may  be moving against changing backgrounds, and 
this  tends to complicate  the correspondence processes. It is 
much simpler to track  an object  which is moving against a 
clear blue  sky than  it is to track  an  object which is moving 
along the ground from  one  type of textured region to  another. 
Furthermore, if it is possiblz for  the  object  to move behind 
other  objects, so that  it is only partly visible at  times  (or even 
completely invisible for some time)  then  the  correspondence 
processes must be able to establish their matches given only 
partial information. 

We will consider two general approaches towards establish- 
ing a  correspondence between image parts in successive frames. 
The first is based on  constructing “iconic” or picture-like 
models of a  segment of one frame.  Such iconic models  are 
sometimes  referred to as templates in  the  picture processing 
literature. Early psychological theories of visual perception 
attempted  to  account  for  human  pattern recognition based 
on  iconic memory models. However, such theories fail to 
account  for recognition of patterns  that are highly abstract, 
or generalized (e.g., the recognition of caricatures, cartoons, 
etc.).  Similarly, computational  theories of pattern recognition 
based on iconic pattern  representations are not applicable  in 
all situations. Nevertheless, the  computational efficiency of 
algorithms for matching  iconic  models against images justifies 
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their serious consideration before  more general modeling tech- 
niques are adopted. 

The second approach employs structural models for seg- 
ments of the first frame, and then  computes  homologous 
representations  for segments of the second frame against 
which it matches those pieces. Such  procedures  can,  in 
general, tolerate grosser changes in size, shape, etc.,  than can 
procedures based on iconic  models. They  are, however,  com- 
putationally  more complex. 

11. TRACKING  USING  ICONIC MODELS 
In tracking using iconic  models,  one  must  first “lock-on,’’ or 

detect a  subset of the first frame which one suspects contains 
a moving object,  construct an iconic representation of that 
subset, and then  match  that iconic representation against the 
second  frame.  Suppose that  for  the  frame acquired at t i ,  

F1 = f ( x , y ,  t l ) ,  x1 G X G X Z ,  Y 1  GY GY2 

is a subimage that  contains a moving object.  For F1 we define 

A x   = x 2  - x 1  and A y  = y z  - y 1 .  

Then  there are  a  variety of iconic representations which can be 
constructed based on F1. These  include 

1)  usingF1  directly; 
2) segmenting F 1  into a  binary image (i.e., an image com- 

posed of 0’s and l’s), where the 1’s indicate  object  points and 
the 0’s nonobject  points; 

3) applying an edge detection  operation to F1 resulting  in  a 
binary image where the edges, or boundaries, of the  objects are 
labeled 1, and all other  points are labeled 0. 

The advantage of using F1 directly is that it requires the 
minimal amount of computation  to  construct  the iconic  repre- 
sentation. However, the  exact gray levels in F1 depend  not 
only on the  properties of the moving object (e.g., its reflec- 
tance  and  shape),  but also on  the  properties of the background 
against which it is moving. If this background can change 
dramatically, relative to  the  object,  from  frame  to  frame (e.g., 
if the background is textured),  then  it might  prove  difficult 
to  match F1 based upon  this direct representation. 

On the  other  hand, segmenting F 1  into  either  an  object/ 
background  or edge/no-edge representation makes the salient 
shape characteristics of the moving object explicit in the iconic 
representation. One must be  able,  however, to  compute such 
segmentations reliably. In  the remainder of this section we 
will denote by F; the iconic representation of F1. Suppose 

F 2 = f ( x , y , t 2 ) ,   O G x G n ,   O G y G m ,  

is the frame  acquired at  time t 2 .  In  order  to  match F1 against 
a piece of F z  (i.e., a  subset of F2 having the same  shape and 
size as F1) one  must first compute  an iconic representation of 
that subset  which is  of the same form as the  representation 
chosen for F 1 .  We will let Fi refer to  that iconic representation 

Next,  one  must  adopt some  measure of match  between F ;  
and F;. The measures  may  be either similarity measures (high 
values indicate  match)  or difference measures  (low values 
indicate  match). A variety of such measures have been  con- 
sidered  including the following. 

of Fz. 

1) Normalized cross correlation (similarity  measure) 

where 

3) Sum of squared  differences  (difference  measure) 

S(X, v) = 2 [ ~ l ( x l  + i ,  y1 +i) - + i, Y + j ) l Z .  (3) 
A x   A y  

i = O  j = O  

The normalized cross correlation is closely related to  the 
sum of squared  differences since 

A x   A y  

+ F2(x + i ,  y +jIz  
i = o  j = o  

and if F: and 2 x F: were fixed,  then S(x ,  y )  would be 
minimized when 

A x   A y  
Fl(xl + i ,  y l  + j )  Fz(x + i, y +i) 

i=o j = o  

is maximized.  This latter  quantity is the unnormalized cross 
correlation. One  must  normalize it as above because the 
unnormalized cross correlation will be high in  areas of F2 
having high average intensity,  whether  or  not  they  match F 1 .  
For C(x ,  y ) ,  it is easily shown  that 0 < C ( x ,   y )  < 1,  and that 
C ( x ,   y )  = 1 if and only if for some constant c [ 9 ]  

From  the  point of view  of computational  expediency,  the 
difference measures (2) and (3), are  preferable to  the similarity 
measure (1) because their cumulative nature (see below) allows 
them to be incorporated  into fast  matching  algorithms. 

The straightforward  space-domain  algorithm for  computing 
any of the preceding match measures  requires A x   A y  opera- 
tions  per pixel. If A x  and A y  are  large, then this can take a 
significant amount of computing  time  on a  general-purpose 
computer. We will discuss two  approaches  toward reducing 
this  time 

1) the use of special-purpose computer  architecture; 
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2) the development of faster  algorithms for general purpose 
computers. 

There are at least three distinct types of architectures  for 
image processing which can profitably be  distinguished;  each 
is accompanied  by its own specific set of advantages, disad- 
vantages, and  theoretical and  practical  problems. 

1) “Focal-plane architectures” which  are  actually  integrated 
into video sensors behind the focal plane and which are 
capable of processing data  at high-quality television data rates 
(7.5 MHz). 

2) Cellular arrays of simple, bit serial processing elements 
(PE’s). Cellular arrays  are  a special class of single-instruction 
stream  multiple-data stream (SIMD) machines having fixed- 
interconnections. 

3) General multiple-instruction  stream  multiple-data  stream 
(MIMD) machines with  many general-purpose processors, 
memories, and a  flexible interconnection  network. Such 
machines can also be operated as SIMD machines. 

As one  moves4rom  architectures of type 1 through  type 3,  
there is a significant decrease in speed. Focal plane  archi- 
tectures can compute a relatively complex computation (e.g., 
a 5 X 5 convolution)  at  the  rate of 100 ns/pixel, while a cellu- 
lar  array such as CLIP 4 [ 101 and MIMD machines  (such as 
ZMOB [ 111 ) would operate  at significantly lower data rates 
(see Davis [ 121 for more  details). 

Balancing this decrease in processing efficiency is an in- 
crease in processing generality.  Focal  plane architecture is 
functionally quite rigid; it cannot, e.g., be used to apply 
iterative  algorithms to  an image unless the  number of itera- 
tions is known a priori. Even then,  it requires duplication 
of circuitry  (e.g., the median of median operation com- 
puted by TI VLSI architecture [ 131). The cellular arrays  are 
more general, since their PE’s are ordinarily  capable of com- 
puting any Boolean function over a single bit  plane of a point 
and  a simple function of its  four  or eight neighbors. How- 
ever, for nonlogical operations,  the PE’s are very difficult to 
program due  to  their “low-level” instruction  set. MIMD 
machines composed of many microprocessors  are  still more 
general, since not only  are the microprocessors’ machine 
instructions ordinarily quite powerful, but compilers  are 
available for translating high-level languages (such as Pascal or 
Fortran)  into  the machine language of the microprocessors. 
However, difficult  problems  in  scheduling  and  sharing need 
to be solved before MIMD machines  become generally 
available. 

For  the purposes of object tracking using iconic  matching 
techniques, focal-plane architectures would be most  preferable 
because they can support such computations  at close to real- 
time data rates. As one  example of a “focal-plane architec- 
ture”  for convolutions,  consider the  approach suggested by 
Texas Instruments  (TI) [ 141 based on VLSI technologies. 

In general, the correlation of a  sequence X = { X i } E o  with  a 
sequence of weights W = {Wi}T=o is defined  by 

n 

j = o  
C(i )  = ~ j ~ [ i + i l .  (4) 

where [ . ]  denotes  modulo m .  
This is essentially the one-dimensional form of the  unnor- 

malized cross correlation discussed above. It is possible to 
extend  the design discussed the following to normalize C(i)  by 
zTZ0 X [ i + j l ,  but  the principle point of the design is the effi- 
cient  computation of C(i) .  Now if we express X, as 

1 

xn = X n , b 2 b ,   x n , b  E 1} (5 1 
b=O 

then by substituting  (4)  into (5) and  reordering  terms we can 
obtain 

r r n  \ 

Thus C(i )  can be computed using a total of about rn shifts  and 
adds. However, time can  be saved by prestoring all values of 

j = o  

in a 2n by B ,  + logz ( n )  bit READ-ONLY memory (ROM) 
where B ,  is the  number of bits  required to store  the maxi- 
mum Wi. Now, the  computation of C(i)  takes r + 1 table 
look-ups  in the  memory,  and r + 1 shifts  and  adds. This tech- 
nique is called the ROM-accumulator (RAC)  technique. 

An advantage of TI’S VLSI design is that  the  dynamic range 
of  the  convolution weights can be increased with  only a small 
increase  in ROM. On the  other  hand,  the VLSI approach is 
impractical for large convolutions. Even a  small, 10 X 10 con- 
volution would  require  a ROM which is 2lo0 X (B,  + logz n )  
bits,  which is clearly impossible. If one  adopted  the blocking 
schemes suggested in [ 141 (i.e., essentially break the large 
memory  into several smaller  memories  and then combine 
the results  with additional  circuitry),  then  the  architecture 
might  become too slow. Note  that  one is also faced with  the 
formidable  problem of loading the partial product  memory 
(which for image tracking  could obviously not be constructed 
with ROM). This  requires both computing all the partial 
products,  and  then storing them  into  memory.  Such  prob- 
lems need to be  faced  before such  architectures could  be 
applied to tracking  problems. See [ 151 for an alternative 
architecture based on charge-coupled devices. 

An alternative to using special purpose  architecture is to 
design fast  algorithms for  computing  the  location of maximum 
match. Although it is possible to use frequency domain  tech- 
niques, we  will restrict our  attention  to space domain  tech- 
niques because they generalize to wider classes of match 
functions. 

Barnea and Silverman [ 161 introduced a class of fast algo- 
rithms  for image registration which avoided the comparison of 
every point in FI with every point  in F;. In  the following, we 
present  a  generalization of some of the ideas presented  in [ 161 
which involves representing the matching problem using state- 
space representation  techniques, and then searching for  the 
best match using an  ordered search  algorithm. For  notational 
convenience, we  will develop the algorithm using only one- 
dimensional  pictures. 

Let q(i) ,  0 Q i Q m ,  be a  sequence of numbers which  repre- 
sents  a  one-dimensional image and  let p(i) ,  0 Q i Q n, n < m 
represent  a  one-dimensional object whose position  in q we 
want to  detect. We say that  the sequence p f {pi}?=o is an 
initial sequence of a  second  sequence p t  = { ~ i } p = ~  if 

a) n Q n’ and 
b) pi = pi ,  0 Q i Q n .  

Let M be any cumulative  mismatch function  for matching  a 
sequence p = against a  sequence q = { q i } E o .  M is 
cumulativq iff when p = is an initial subsequence of 
p t  = {P:)?=,, M ( P ,  q ( j ) )  Q M(p’ ,  q( j ) ) .  Here, M ( P ,  d j ) )  will 
be  a  difference  measure that represents the dissimilarity of the 
sequence p to  the subsequence q j ,  * . . , q j + n -  
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As an example,  consider the mismatch function A defined as 

so that A ,  is a  cumulative  mismatch  measure. 

let ( t ,  j ,  M ( p r ,  q( j ) ) )  where 
The state-space, then, is defined as follows:  A stare is a trip- 

1) t indicates how  long an initial  subsequence of p has been 

2) j is a position  in q ,  
3) p f  is the initial  subsequence of length t of p ,  and 
4)  M ( p r ,  q( j ) )  is the dissimilarity of pr to 4( j ) .  

A start  state is of the  form ( r ,  j ,  M ( p r ,  q ( j ) ) ) ,  where  1 Q 
r < n and  for each r ,  1 Q j < ( m  - r ) ,  while a goal state is one 
for which r = n. Notice that  the  start  state  represents a  situa- 
tion  where  an initial  subsequence of p has  been compared to 
q at  position j ,  while  a goal state represents the  situation when 
all of p has been compared to q starting  at  position j .  If S = 
( t ,  j ,  M ( p f ,  q( j ) ) )  is a state,  then  the k-successor of S (denoted 
o k ( S ) )  is S' where 

compared against q starting  at position j ,  

S' = ( t  + k, j ,  ~ ( p t + ~ ,  q ( j ) ) )  

i.e., S' is obtained by  comparing k more  points  from p against 
the subsequence of q beginning at j .  If S, = O k ( S , - l ) ,  S,-l = 
0 k ( S , - 2 ) ,  * * e ,  S2  = O k ( S l ) ,  then S1, * * * , S, is a path from 
S1 to S,. The cost of the  path is the value of the dissimilarity 
measure in  state S, (which is also the maximum of the dis- 
similarity  measures for  the set of states SI, . * * , S,); we will 
also refer to this  cost as the cost of S,. The objective, then, is 
to find a  minimum  cost path  between a start  state and  a goal 
state. This  can  be  accomplished by an ordered search algo- 
rithm [ 171. The cumulat'lve nature of the mismatch  measure 
assures the admissibility of the algorithm-i.e., it is guaranteed 
to find a minimum cost path. 

The  ordered search  algorithm is defined as follows. 
1)  Put al l  start  states, ( r ,  j ,  M(p', ~ ( j ) ) ) ,  0 Q j Q m - n, into 

a  set called OPEN. 
2 )  Choose the  state  from OPEN with minimal dissimilarity 

measure and delete it  from OPEN. Let S = ( t ,  j ,  M ( p r ,  q( j ) ) )  
be this state. 

3) If S is a goal state,  then  the best match of p to q occurs 
at  position j ,  and  the algorithm halts. Otherwise, continue. 

4)  Compute O k ( S )  and  add this new state  to OPEN. Go to 
Step  2. 

A slight modification of the above algorithm, employed by 
Barnea and Silverman [ 161, can lead to dramatic savings in 

computation  time; however, the algorithm  would no longer 
be admissible. The  modification involves not  putting  into 
OPEN any  state ( t ,  j ,  M ( p t ,  q ( j ) ) )  with M b ' ,  q ( j ) ) )  T(t) ,  
where T is a threshold  function. Barnea and Silverman [ 161 
discuss methods  for  computing a  reasonable  threshold func- 
tion  from  the sequences p and q .  We will not  adopt this 
modification  in  the example  below. 

As an example of the  application of the algorithm,  consider 
Fig. 1. Fig. l(a)  contains  an image q and  an  object p .  The 
iterations of the ordered  search  algorithm are described in 
Fig. l(b), using k = 1, r = 2 and dissimilarity measure A ,  the 
sum of absolute differences. The example  proceeds as follows. 
With r = 2 ,  the initial  subsequence of p of length 2 (i.e., 4 7) 
is matched against the subsequence of length 2 in q starting  at 
each of the positions 0, 1, * * * , 5. For example, at position 3,  
the mismatch is 14 - 3 1 + 17 - 2 I = 6.  For each  partial match a 
state is entered  into  the  set OPEN. The minimal cost state is 

With k = 1, o k ( S l )  is obtained by  adding the mismatch of 
p 2  and q 3  to  the cost of S1. This mismatch is 12 - 3 I = 1, so 
that o k ( S l )  is the  state S2 = (3,  1, 2 ) ,  indicating that  the 
initial  subsequence of length 3 of p (i.e., 4 7 2) has been 
matched to q 1  q 2 q 2 .  This state, S 2 ,  is added to OPEN. 

S2 is also the minimal  cost state  at  iteration 2, with O k ( S 2 )  
being the  state S3 = (4, 1,4). Notice that even though S3 is 
a final state,  the algorithm  does not  terminate.  For a final 
state  to be chosen by the algorithm it  must be known to be 
minimal over the  current OPEN set, thus S3 must  first  be 
placed in OPEN and  its dissimilarity measure  compared to  the 
measures of all states.  At iteration 3 this  comparison  yields 
the minimal  cost state S4 = (2,  4, 3). o k ( S 4 )  is the  state 
( 3 , 4 , 6 ) ,  but  at  iteration 4 state S5 = ( 2 , 5 , 4 )  is chosen 
arbitrarily from  the minimal  cost  subset of OPEN, ((2, 5 ,4) ,  
(2 ,0 ,4) ,   (4 ,   1 ,4)} .  We next choose ( 2 ,  5 , 4 )  whose successor, 
(3 ,  5, 6), is thenplaced  inOPEN.  Then,  at  iteration 5, ( 2 , 0 , 4 )  
is taken  from OPEN, and  its successor, (3, 0, 9),  is placed on 
OPEN. Finally, at  iteration 6 ,  goal state  (4,  1,4) is chosen 
from OPEN and  the algorithm halts. 

Although the  ordered search  algorithm will decrease the 
number of comparisons of points in p with points  in q ,  there 
are two sources of overhead which  might render  the strategy 
more costly than  the direct approach. 

1)  The algorithm  must  maintain  a sorted list of states repre- 
senting  partial matches of p to q. 

2) If not enough  primary  storage is available to simulta- 
neously  maintain all of 4 ,  then  the algorithm may need to page 
pieces of q in and out  when  the subsequence of q associated 
with the newly chosen state of Step 2 is found  not to be  in 
the  currently available storage. This 1 / 0  overhead  can'severely 
degrade the performance of the algorithm. 

The  computational cost of matching p against q can also be 
reduced  by  employing  a subtemplate-template matching 
strategy [ 181. Here, one  matches a  piece, p' of p against 4 ,  
and then matches the remainder of p only at those  points in q 
where the  match of p' is sufficiently  good (e.g., higher than 
some threshold t if using a  similarity  measure). If p' has n' 
points, n' < n, then  the  total  amount of computation per- 
formed by the  subtemplate-template matching  algorithm is 

S = ( 2 ,  1,  1). 

w( t )  = mn' + mnP 

where P is the  probability  that  the  match of p' to q ( j )  has a 
value  greater than t for  randomly chosen values of j .  Note  that 
unlike  the  ordered search strategy,  the  subtemplate-template 
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matching  strategy is not guaranteed to find  the best match 
since there is a nonzero probability that  the  match  of p’ to 4 
at  the position which maximizes the  match of p to q will be 
below the threshold t .  Note  that  this false dismissal rate can 
be kept arbitrarily close to the flase dismissal rate  of matching 
p to 4 in  two ways: 

1) lowering the threshold t for matching p f  against q ;  
2) increasing the size of the  subtemplate p ’ .  

Lowering the  threshold, of course, will increase W ( t )  since 
for t‘ < t ,  more  points in 4 will match p ’ .  If t is made too 
low, then  it is possible for W ( t )  to be greater than mn, which 
is clearly undesirable. Similarly, increasing the size of p f  may 
also increase W ( t ) .  Vanderbrug  and  Rosenfeld [ 181 discuss 
choices of n’ and t which minimize W ( t )  while keeping the 
overall error  rate below threshold. 

A related strategy to  subtemplate-template matching is 
coarse-fine template matching [ 191. Here, one f i t  matches 
an averaged and sampled version p’ of p against a similarly 
averaged and sampled version q’ of 4 .  Positions  in 4’ which 
are  good matches to p ’  are then used to guide the  application 
of p to q. Again, there are tradeoffs  between reliability and 
two  factors-the size of p’  relative to p and the threshold used 
in matching p‘  to 4’. 

The coarse-fine matching  strategy can be further generalized 
to matching  in a pyramid image representation [ 201, [ 21 1. 
A pyramid is a  stack of regularly reduced resolution versions 
of an image. Tanimoto  and Pavlidis [22],  e.g., describe an 
edge detection  procedure which operates  in a  pyramid. 

The applicability of these correlation-based  matching pro- 
cedures is limited  by a number of factors. The  two  most im- 
portant of these for  object tracking  are the inability to deal 
with objects whose orientations in the image plane  change 
from frame to frame and  the inability to match given only 
partial information.  The  structural  techniques discussed in 
Section I11 are designed to overcome  these  problems. 

111. STRUCTURAL MATCHING TECHNIQUES 
In this section we shall discuss methods which establish the 

correspondence  between  points of interest  at consecutive time 
instances using structural models or  domain  constraints to 
guide the process. The  points of interest  are assumed to be 
derived from  the images by low-level operators which can 
detect specified components  and  determine  the  locations  and 
descriptive feature values of those  components. Each such 
component,  together  with  its  features will be referred to as a 

token. For example,  a simple 3 X 3 edge operator  with local 
nonmaxima suppression  could  be used to form a token repre- 
senting an edge which is considered to be  centered  at a given 
pixel with  a specific orientation  and  contrast.  The  function of 
the matching process is thus to construct a  mapping from  the 
set of tokens of one image to  the  set of tokens of a  second 
image. Clearly, the  methods  suitable  for establishing this 
mapping depend  on  the particular attributes retained with 
the  tokens. 

However, intertoken  constraints imposed either by structural 
models or  the scene domain are also important. Object  models 
can be derived from  two primary sources. General descriptive 
models of the  objects  or  object  types  expected to occur in the 
scene can be  provided to  the analysis system before processing 
is initiated. In this case the  tokens  in each image are matched 
against the descriptive features  contained  in  the models. For a 
given token in one image the corresponding token in the 
preceding image is identified as that  token which matched  the 
same  model feature as the given token. Models can also be 
derived from  the images as they are processed. In  this case 
general information  about  object  formation is used to group 
the  tokens in an image into  structures which are a  first esti- 
mate of the  object models and provide constraints useful for 
establishing the  correspondence to the  tokens  in  another 
image. Such  scene  domain constraints can also be  applied to 
individual tokens, usually in the  form of limits imposed on  the 
area of search for matching tokens. 

An early  system which employed motion measurements for 
scene segmentation  (Potter [ 231 ) formed  tokens referred to as 
“cross-shaped templates.” The  attributes of these  tokens were 
the distances (horizontal and  vertical) from a given pixel to  the 
nearest gray level discontinuity.  To  match a given token of 
this  sort  from  one image a heuristic search of the second image 
was performed,  starting  at  the image location of the original 
token.  The search  expanded outward  from  that  starting posi- 
tion  and  continued  until  either a  similarity  measure over the 
token  attributes exceeded  a threshold, Le., a match was found, 
or a  preset  search limit was reached. The displacement be- 
tween the  locations of matched  tokens  constituted  the  motion 
measurement for  the  tokens of the  first image. The segmen- 
tation of that image was then  performed using the  constraint 
that  tokens with the  same  motion measurements were part of 
the same object. 

Two  major  problems arose for  the system. First,  the  attri- 
butes associated with  the  tokens  limited  the allowable object 
motions to be  simple translations in the image plane. Second, 
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the  system  attempted  to  form a token  for every pixel in  the 
image plane, thereby incurring  extensive computation  in  the 
search phase. By considering the distance from each object 
boundary  point, i.e., the gray level discontinuities used in 
[23], to some  central  position, a  model of the  object to be 
tracked can  be used in conjunction with  a  matching technique 
to overcome these problems. The matching technique is a 
generalization of the Hough transform  (Duda  and Hart [ 241 ) 
to arbitrary shapes as encoded in boundary list representations 
(Ballard [25],  Davis and Yam [26]) and will be discussed in 
the following. We will first  describe  position  invariant  match- 
ing, and  then describe  generalizations to orientation  and scale 
invariant  matching. 

Let B = {(Xi, Yi)}?=, be  a list of boundary  points  for  the 
shape  to be tracked. B might be the set of edge locations in an 
image window detected by an “interest operator”  at  time r l .  
Let p = (X, Y) be any point  (in practice,  a central  point  such 
as the  centroid of B will be computationally convenient to use 
as p ) .  Then  the Hough-representation of Busing p ,  H(B,  p ) ,  
is the  sequence of vectors {d i }?=, ,  where dxi = X - Xi and 

Now, suppose we are given an image f, which contains an 
dyi  = Y - Yi. Fig. 2. First image of pair to be matched. 

instance of the  shape whose boundary is described  by B .  Here, 
f would be the image acquired at  time t z .  A  second  array h ,  
which is an array of accumulators  that is registered with f, will 
be used to  compute  the  transform o f f  with respect to H(B,  p ) .  
After  the  transform is computed,  points in h with high values 
will correspond to hypothetical  locations of p in f. Of course, 
once  the  location of p is known,  the instance of B in f can be 
recovered using H(B,  p ) .  The array h will  be larger than  the 
array o f f ,  since if the  shape is only partly  contained  in f, the 
point p might  lie outside off. 

The  transform h is computed by first applying an edge de- 
tector to f to  produce  an edge map e of f .  Each edge ei in e 
is a potential element of the  set B .  Although contrast  and 
orientation  information may limit  the subset of B to which 
any ei may correspond,  there is, in general, no way to deter- 
mine the  element of B to which any ei corresponds without 
considering the positions of all the  other ei.  Therefore, each 
edge element ei is compared to each  vector  in H(B,  p )  to com- 
pute a possible location  for p ,  and that  location is incre- 
mented  in  the  transform h .  That is, h is computed by the 
following simple algorithm originally reported  in [ 251 : 

Algorithm MATCH 1 : 
For each ei = (Xi, Yi) in e do 

For each d i  = (dxi ,   dyi)  in H(B,  p )  do 
h(Xi  + dxj, Yi + dyi )  : = 

h(Xi ,  + dxi ,  Yi + d y j )  + 1. 

Notice that  the result of applying  this  algorithm is exactly 
the same as correlating  a  binary image representation of B 
with the binary edge map e (this was originally pointed  out by 
Sklansky [27]). The  correlation, however, is based on con- 
sidering all points  in h as potential  locations  for p ,  and  then 
for each location  counting  the  number of appropriately posi- 
tioned (according to H(B, p ) )  edges in e. The advantage of the 
transform algorithm is computational efficiency. If h is an 
r X s array  then to  compute h using a standard  correlation 
algorithm  requires O(r X s X n) operations-i.e., for each of 
r X s potential  locations  for p ,  we must check the n locations 
of possible edge points  determined by H(B,  p ) .  Algorithm 
MATCH 1,  on  the  other  hand, requires O( le I X n) operations, 
where l e  I is the  number of edges detected  in f. Since, in prac- 

Fig. 3. Second image of pair to be matched. 

fice, edges account  for  no  more  than 5-10 percent of any 
image, algorithm MATCH 1 will result  in speedups of 10 to 20 
over conventional correlation procedures. As  an example of 
this process, consider the  two aerial photographs  contained  in 
Figs. 2 and 3. The  objects in these images appear to move 
toward  the  top of the image. Fig. 4 shows the edge points 
found  in Fig. 2, along with points of interest  (marked by 
letters) derived by  grouping edge points  into sets, one  set per 
point of interest. A Hough-representation is formed  for  the 
set of edge points associated with each point of interest using 
the  location indicated  by the  letter as the  central  point.  There 
are  ten  points of interest, i.e., tokens,  in Fig. 4. For each of 
these tokens a Hough transformation relative to the edge 
points  found in the second image is formed. Fig. 5 shows the 
edge points  for  the second image in  addition to the positions 
of the five highest peaks in each  transform. Intertoken con- 
straints were then  employed  to  determine  the “best”  matches. 
Note  that  two  tokens, G and I ,  moved off the image and 
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Fig. 4. Edge points and points of interest  derived from  the ima 
Ftg. 2. 

Fig. 6. Resulting  matched  points of interest for the image in Fig. 3. n 

Algorithm MATCH 2 : 
For each ei = (Xi, Yi)  in e do 

For each di in H(B, p )  do 

For 6 = 0 , 2 n ,  by dB do begin 
Ri = 4- 
hx = Ri * COS 6 + X i ;  
h y = R i * S i n 6 + Y i ;  
W X ,  hy) = Nh, ,  h y )  + 1 ; 

end. 

Unlike  algorithm MATCH 1  where  the  results were identical 
to what  could have been  obtained  by  correlating  the binary 
image e with  a  binary image representation of B ,  the  results of 
applying  algorithm MATCH 2 are  not  identical to  what  would 
be obtained  by individually  correlating m = 2n/d6 rotated 
versions of H with e, and  then  choosing  the  maximum  match 
amongst  the m correlation planes. Instead,  algorithm MATCH 
2 adds  the rn correlation planes together  to  obtain  a single 
plane ( h ) .  The  position in this plane having maximum value 
is then  interpreted as the  location of B .  

Notice  that if prior  information is available  concerning  the 
orientation of the  object  in  the  frame,  then  this  information 
can be easily taken  advantage of by  the  algorithm. One  simply 
modifies the  bounds  on  the  inner FOR loop so that  only cir- 
cular  arcs  in h , rather  than  entire circles, are  incremented.  For 
example,  in  tracking vehicles moving  along roads,  one can 
ordinarily assume that  between  the successive frames  the 
vehicle will not  make  a turn sharper  than n / 2 ,  since roads  do 
not  bend  that  quickly. 

Although  algorithm MATCH 2 can detect  an  arbitrarily 
oriented version of a  shape,  it  does  not  compute  the  orienta- 
tion of the  shape. This could be done  by m a i n w g  m 
separate  correlation planes  and applying  algorithm MATCH 1 
to  m rotated versions of H(B,  p ) .  In  practice,  however,  this 
approach  has  unacceptable storage and  time  requirements. 

Instead  it is possible to  construct  a  second  transform of B ,  
but  with  respect  to  a  different  point p’ .  If (i, j )  is the  point 
in the  transform of H ( B , p )  having maximal  value,  and if 
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Fig. 5. Edge points  from the image in  Fig. 3, and the locations of 
possible  matches to  the  points of interest  from Fig. 4. 

another  token J disappeared  due to structural  changes  in  the 
image. In  these  three cases the  “best”  match was determined 
to be no  match. 

In the preceding, we assumed that  the  orientation of B in f 
was known.  Suppose,  on  the  contrary,  that  it is not  known 
(this  can  occur, e.g., while tracking  a vehicle, from above, 
which is moving along an  unpredictable  path). In this case, 
when we hypothesize  that  a  particular el  corresponds to  some 
dj ,  the  strongest  conclusion we can  draw is that if el  were 
indeed di ,  then p must  lie  somewhere  on  the  circle of radius 
Ri = centered  at el. The following algorithm 
accomplishes  rotation invariant  matching. 
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(i’, j ’ )  is the  point  in  the  transform of H ( B ,  p ’ )  having max- 
imal value (notice  that  these values must, in principle, be 
identical), then  the  direction  from ( i , j )  to ( i ‘ , j ‘ )  gives the 
direction  from p to  p’  in f. Points p and p’  should  be  cho- 
sen to  be sufficiently  far  apart so that small errors in  the 
locations of the  maxima  in  the  transforms h of H ( B , p )  and 
h’ of H ( B , p ’ )  do  not lead to large errors in the  computed 
orientation of B .  

Notice  that  the  algorithms can also be  modified  in  a  straight- 
forward  way to  deal  with  a  limited range of scale informa- 
tion.  Suppose, e.g., it is known  that  the  object  in  the image is 
S times  the size of the  model,  with S E [S,, Sz] (note SI < S2 
and 0 <SI). Then  in  algorithm MATCH 1 rather  than  just 
incrementing  a single point  at  distance d =- from 
an edge point,  one  marks a l l  points  in  direction  tan-’ (dy/!,) 
and  with  distances d’  E [Sld, Szd] .  For  rotation  invanant 
matching,  rather  than  incrementing  a  circle  (or  circular  arcs 
if constraints  on  the  orientation  are available) one  increments 
a  ring of inner  radius Sld and  outer  radius S2d (or  the  inter- 
section of the  ring  with wedges). Again, different  correlation 
planes  can  be  maintained  for  different values of the scale, but 
this  increases  the  storage  and  computational  requirements of 
the  matching  algorithms.  Note  that  this  idea was employed 
by Davis [28 ]  to  detect circles of various sizes using Hough- 
transform  techniques. 

Boundary  descriptions of objects were also employed  by 
the  system discussed in  Martin  and  Aggamal 1291. This sys- 
tem  extracted  simple closed curves representing  figures  with 
curvilinear  boundaries  from  each  image  in  a  time  ordered 
sequence.  In  this case the  input was restricted so that  the 
figures independently moved in planes  parallel to  the image 
plane.  The  figures  were  planar  with  opaque  homogeneous 
shading. This meant  that  when  the figures  moved so as to 
occlude  one  another  the  boundaries merged into  apparently 
single figures. The  main  task of the  system was thus  to derive 
descriptions of the  actual figure  boundaries  which were con- 
stituents of the  apparent figures in  the images. 

The  fact that  a given figure  in  the image  might be  composed 
of boundary  points  from several actual  figures  precluded the 
matching of the  entire  boundary  between  two images. Instead 
the  boundaries were broken  into sets of tokens  with  each 
token  representing  a  boundary  section  which  approximated 
a straight  line or  a circular arc.  The  token  attributes were the 
length  and  curvature of the  represented arc. The  matching 
process  began  by  finding  pairs of highly  similar  tokens,  re- 
ferred to as “seeds.”  The  remainder of the  matching  process 
made use of the  ordering of the  tokens  on  the figure bound- 
aries to constrain  the  segment  “growing”  algorithm  that was 
applied to  the already  matched  “seeds.” 

This process was able to  detect  extended  boundary  segments 
having the  same  shape  in  consecutive images. Since  the  actual 
figures were  assumed to  be rigid, a  pair of matched  segments 
could  be  interpreted as being two views of  a  portion  of an 
actual  object  boundary.  Thus  the  boundary  shapes were used 
to  form the  correspondence  which in turn  provided  motion 
measurements  for  each  matched  segment.  The  final  grouping 
into  actual  objects was based on  the  constraint  that  segments 
exhibiting similar motions were  sections of a single rigid 
object. 

This  latter  constraint is quite  important  and is the basis of 
the  object  interpretation  in  most  current  motion analysis 
systems.  However, for  the  correspondence  processes  in  the 
systems discussed so far  in  this  section,  the  matching  has  been 

based on  token  attributes  not  related  to  motion.  In  the re- 
mainder of this  section we will illustrate how the  motion  or 
the  expected  motion of ‘the  scene  components can be used 
in forming  the  correspondence. 

Endlich et  al. [ 301 did not  incorporate  an explicit  movement 
expectation  but did assume  that  most of the  tokens  within 
arbitrarily  chosen subimages exhibited similar velocities. 
Under  this  assumption  their  system  formed  a Correspondence 
which  specified  a  consistent  velocity  for  the largest number 
of tokens  in  a  subimage.  The  tokens were referred to  as 
“brightness  centers”  and  had  an  intensity  attribute as well as 
an image location.  The  procedure used by the  system was to  
iteratively  refine the  estimate of the  representative  velocity 
and to use the  estimated  velocity  to  constrain  the  possible 
matches  for  each  token.  The  process was iterated  until  each 
token  had  no  more  than  one possible match. 

The  velocities  determined for  each  subimage were then 
merged together to  yield a velocity  map  which  represented 
the  cloud  motions  in  the satellite images processed  by  this 
system. For more general image  sequences,  however,  the 
arbitrary  partitioning of the image into  subimages  could be 
a severe problem because the  presence of two  or  more  inde- 
pendently moving scene  components  in a given subimage 
would  invalidate  the  assumption of a  representative  velocity 
for  that  subimage.  In  most cases it will be  impossible to 
know a priori how to  partition  the image so that  each sub- 
image  contains  only  one  scene  component.  One  might, 
however,  make use of the  localized  motion  consistency  con- 
straint  in a network of competing  hypotheses,  much like 
the  consistent  labeling  procedures of Rosenfeld et al. [ 3 1 ] . 

Barnard and  Thompson [321 accomplished  this  by  locating 
the  prominent (i.e., most  likely matchable)  features in each 
of a  pair of images with an “interest  operator.”  Associated 
with  the  operator was a similarity  measure  which was used 
both  to initialize the  “probabilities”  for  the  hypothesized 
matches  at  the  tokens  and to  update  those  “probabilities” 
at  each  iteration of the  refining process. The  network  upon 
which  this  refining  process  operated was created  from  the 
tokens  in  the f i t  of the  pair of images by  establishing  a 
node  for  each  token  and  connections  between all nodes 
whose tokens were  within  a  preset  distance of each  other. 
At  each  node  a  “label”  set was formed  containing  an  element 
for  each  possible  match of the  associated  token.  The labels 
were  ordered  pairs of -the  disparity,  in  the x and y directions 
of the image  plane,  between  the  location of the  token of the 
node  and  the  location of each  token  within  a given radius of 
that  position  in  the  second image of the pair. 

In  addition  to  the  possible  match labels, there was included 
a special  label  specifying that  no  match  could  be  found  for  the 
given token.  The  inclusion of this  special  label is indicative of 
an important  concept  for  motion  analysis  systems:  the  track- 
ing  procedures  must  be  robust  enough to  continue  functioning 
properly  when  some of the  features of interest, i.e., the  tokens 
currently being tracked,  are  no  longer  detectable  in  the image. 
A  particular  feature  may not appear  in  a given image of the 
sequence  for several reasons:  the  feature  might  become  oc- 
cluded  by  scene  components of the  foreground;  the image 
characteristics  might for  some  reason, e.g., illumination 
changes,  not  remain  within  the  tolerances of the interest 
operator;  or  the  feature may  move beyond  the view of the 
imaging device. 

The  motion  consistency  constraint of Barnard  and  Thompson 
1321 was propagated  throughout  the  network  by  increasing 
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the  probability assigned to a given label at a  specified node  by 
an amount  proportional  to  the sum of the probabilities of the 
similar labels at  connected nodes.  This  label r e f i i g  process 
could  be iterated  until  the  network stabilized or  until every 
node  had a clearly defined “most likely”  label. However, i n ,  
practice it was iterated  ten times, leaving a few ambiguous 
labelings. 

A network of a different  sort was proposed  by Ullman [ 51. 
Here,  a node was associated with each token in the pair of 
consecutive frames. For  each  token in one  frame  the  set of 
possible matches in the  other frame was determined and 
connections were established between  the  node  for  the given 
token  and  the nodes for  the  tokens  in  the  matching  set. This 
network was used to calculate the correspondence  which 
minimized a  mapping  cost function.  The calculation was to 
be performed by  simple  processors, one  attached to every 
node  and  connection  in  the  network. Each node processor 
communicated with the processors attached  to  the  connections 
incident on that  node, while each connection processor com- 
municated with the Processors at  the  two  nodes which ter- 
minated  the  connection.  Thus  the processors  could  be par- 
titioned  into  three disjoint  sets: one  set associated with the 
tokens of the first frame;  another  set related to  the  tokens 
in the second frame;  and  the  fiial set  representing possible 
matches  between two  tokens,  one  from each  frame. 
All processors computed only simple functions of values 

stored  at  the neighboring  processors and used those  func- 
tions  to  update  their  own values. This updating  procedure 
was iterated  until  the values in  the  network stabilized,  at 
which time  the  connection processors  had values of either 
1 or 0, only.  The resulting  correspondence was then specified 
by the  set of connection processors that had  a  value of 1, 
i.e., a given token of the first frame was mapped to a token 
of the  second frame if the nodes for  those  tokens were con- 
nected  in  the  network and the processor attached  to  that 
connection had  a value of 1. Thus  the  specified correspon- 
dence was the mapping which yielded the minimal cost. 

The cost function proposed was directly  related to  the 
probability  distribution of the velocity of the  tokens as 
measured in  the images. Minimizing this cost function was 
shown  by Ullman [ 51 to be optimal  under  the  assumption 
that  the movement of each token was independent of the 
movements of the  other  tokens.  It was also argued that 
one-to-one mappings should be preferred and  then shown 
that a  simple modification to the cost function would effect 
this  preference. 

As the  time between  frames increased and  the velocities of 
the  tokens decreased, the mapping also tended to IIlinimize 
the  total distance moved by all tokens in the scene. This was 
the case in which the nearest  neighbor match of the  tokens 
tended to be a one-to-one mapping. At higher velocities 
nearest  neighbor  matching  would  result in  numerous “splits” 
and “fusions,” i.e., one-to-many  and  many-to-one mappings, 
while the  “optimal” cost minimizing mapping would retain 
its preference for  one-to-one mappings. In this way, although 
the nearest  neighbor match might not be the desired corre- 
spondence,  it could  be used as the initial estimate  for  the 
minimizing process which derives the  “optimal” mapping. 
Thus  the  network would be constructed by connecting  the 
node of a given token  in  one  frame  to  the N nodes associated 
with the N nearest tokens  from  the  other frame. It should 
be noted  that  there is no mechanism for  adding  connections 
to  the  network  once  the minimization process has begun, 

so the -initial set of possible matches  would have to  contain 
the  “correct”  one. 

There were two major problems with the overall scheme 
proposed in Ullman [SI for forming the correspondence 
between frames. The first was similar to  the  problem of 
subimage selection of Endlich et al. [30], in that  the cost 
function used a single distribution  for  the velocities. This 
was justified  by  the  independence of movement assumption. 
Clearly, the validity of this assumption would be in  doubt if 
several tokens were established for each object in the scene. 
In  that case the  motions of the  tokens associated with a  par- 
ticular object would be interdependent  and directly  related 
to  the overall movement of the  object.  The second problem 
was the  requirement  that  the correspondence be specified 
by  a  “cover,” i.e., every token  in  both frames was matched. 
Note  that  for  the examples studied in Ullman [5] this was 
not a problem because the images were of dot  patterns in 
which  occlusion was rare. However, for general scenes the 
features  that give rise to tokens will frequently disappear 
and  appear necessitating the no-match  possibility, as discussed 
earlier in this  section.  A solution to this problem might  be 
to introduce  into  the original network  two special nodes 
for which the  connection would  mean “no match.”  Initially all 
the  nodes  for a given frame would be connected to  one of the 
special nodes and all the  nodes  for  the  other  frame would be 
connected  to  the remaining special node.  The difficulty 
here would be determining  the cost  associated with  the  no 
match  connection as it relates to the velocity distribution 
and  the  one-to-one mapping  preference. 

The  expected velocity of a token was also used in the 
correspondence  forming process of the system described in 
Rashid [81. Again, the  input was a  sequence of images of 
dot  patterns with  a token created for each dot.  In this case, 
however,  each token  retained  its own expected velocity 
parameter. The  expectations were used to  determine  the 
predicted locations  for  the  tokens  from  one  frame. Those 
computed  locations were then matched against the  tokens 
in the  next frame. The desired Correspondence was the 
one-to-one mapping from  the set of predicted locations 
to  the set of tokens  for  the new frame which minimized 
the  sum of all the distances between  the predicted locations 
and  their  matched  tokens. 

The minimization was not  computed by  a network of 
simple  processors. Instead, a Voronoi  construction (Shamos 
[33]) was used to provide an efficient implementation.  For 
a set of N locations a Voronoi  construction tessillates the 
plane into N polygons (some possibly infinite  in  size).  Each 
polygon is associated with  exactly  one of the  locations in the 
set and  bounds  the area containing all the  points  for which 
the associated location is the closest element of the  set.  Thus 
to  determine  the closest location to a point,  one need only ask 
which  polygon of the  Voronoi  construction  contains  that 
point.  In Rashid [8] a Voronoi  construction was performed 
for  the  set of predicted locations  from a given frame,  then 
each token of the new frame was matched to the closest pre- 
dicted  location by  finding  which  polygon  included the  token. 
If more  than  one  token was within  a single polygon  then  the 
token nearest to the associated  predicted location was chosen 
as the  match  for  that  location.  The  matched  location was 
deleted from  the  set  and a new Voronoi  construction was 
computed.  The efficiency lies in  the  fact  that given a Voronoi 
construction  for N points,  computing a new construction 
using N-1 of those  points is linear in  the  number of points. 
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The  problems  that occur  with  this  scheme  are twofold  and 
concern  the initialization  and updating of the velocity  pre- 
diction  functions.  First, since the prediction is used to  form 
the  correspondence,  the mapping from  the first frame of the 
sequence to  the second frame must depend  on  expectations 
supplied to  the system or  on some  default expectations. 
The validity of these  initial expectations is important because 
an incorrect  yet consistent  mapping between  the fmt  pair of 
frames will generate erroneous predictions for mapping the 
third  frame,  and so on. 

The second  problem might occur when a token changes 
its velocity. This was partially accounted  for in Rashid [8] 
by making the  expected velocity  be the average of the  two 
velocities measured from  the immediately previous frames. 
This  works well if the velocity “varies smoothly,” as assumed 
in [8]. However, abrupt changes in velocity  would  invalidate 
the  prediction  and leave the system with  the problem of deter- 
mining an initial prediction again. These are  crucial points  for 
any  predictive  scheme: the  prediction mechanism must have 
an initialization  phase,  a  normal updating phase, and  an  error 
detection and correction phase. 

A similar sort of predictive analysis was used in  the  top level 
of the hierarchical  matching  system  described  in  Roach and 
Aggarwal [34].  The  input domain for this  system was that of 
images of polyhedra moving in  three-dimensional  space. The 
images were processed to yield the edges of the visible planar 
surfaces, with line and vertex  descriptions derived from these 
extracted edges. These  descriptions were then segmented into 
preliminary object  interpretations based on general domain 
constraints. The  domain, however, did allow ambiguities 
which  generated  multiple interpretations of given line-vertex 
groups. These interpretations were maintained by  the system 
until conclusive evidence was obtained  to decide  which was 
correct. 

The correspondence between consecutive images was estab- 
lished by  a  hierarchical  system  which  invoked the lower 
level processes only as the  upper levels failed. The  top level 
process calculated  a centroid  for each object  interpretation 
and using information  from preceding images determined 
a predicted  location  for every centroid. These predictions 
were then  matched by  a  nearest  neighbor  rule to  the  centroids 
found  in  the succeeding image. As long as the  predictions 
remained valid this level was sufficient, otherwise the system 
invoked the second level matching process. 

At the second level, coarse descriptions of relative object 
positions, e.g., object A is to  the  left  and below object B ,  
were used to  match  object  interpretations.  The coarseness 
of the  feature ensured that  the description  would remain 
constant  for fairly long intervals of time. However, upon 
failure, the  third  and lowest level matching process was 
activated.  This  process matched  object  interpretations based 
on  the relative positions of the polygonal faces in each inter- 
pretation.  In  this  manner several different levels of processes 
used information  from various object  descriptions and rela- 
tionships to establish the correspondence between images. 

This section has  described several methods  for  operating 
upon  points of interest  extracted  or  abstracted  from  the gray 
level information  in  the images to form  an interimage  cor- 
respondence.  These methods  employed scene domain con- 
straints,  structural  information  from  object models, constancy 
features of the moving objects,  and predictive analysis based 
on  movement  expectations.  The  complexity of the move- 
ments analyzable by  the  methods is greater than  those of 
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Section 11, while, the analysis requires the images to  contain 
distinct and discrete features  from which the  tokens can be 
created. 

IV. SUMMARY 
We have discussed procedures for solving the correspondence 

problem based on  both iconic  and structural  representations 
of the image parts  to be  matched from  frame to frame. The 
iconic representations lead to fast matching  algorithms, but 
are not general enough to be applied to all correspondence 
problems. Matching algorithms based on  structural repre- 
sentations, while ordinarily  more  demanding computationally 
than iconic-based  algorithms, can tolerate a wider variety of 
pattern  transformations (e.g., rotations, scale changes, etc.) 

The correspondence problem, is, of course only  one in  a 
sequence of problems  that must  be solved in  dynamic  scene 
analysis. The principal other problems, which this survey did 
not address,  include the  detection of motion,  the grouping 
of moving parts  into  objects,  and  the recognition  and  tracking 
of those objects from frame to frame. 
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Invited Paper 

Absrtract-Research is beginning to uncover  fundamental computa- 
tional principles  underlying  vision  that  apply e q d y  to artificial and 
natural  systems. These principles  provide insights into the  limitations 
of euly machine  vision  systems  and  lay a foundation  for  building 
future  systems  capable of high  performance  in a broad range of visual 
domains. 

We present this emerging computational view of visual perception, 
discuss some  early work in  the  field  in  its context, and put forward 
current  thoughts  on  the  overall  organization  and  operation of a general- 
purpose  computer  vision  system,  synthesizing  recent  theoretical  and 
experimental results. 

I .  INTRODUCTION s IGNIFICANT progress has been made in  recent years on 
practical  applications of machine vision. Systems have 
been developed that achieve useful levels of performance 

on complex real imagery in tasks  such as inspection of indus- 
trial parts [ 11, [ 21, interpretation of aerial imagery [ 3 ] ,  and 
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analysis of chest X-rays [4].  Virtually all such systems are 
special purpose, being heavily dependent  on domain-specific 
constraints and  techniques. For  example,  industrial vision 
systems usually require high contrast to obtain binary images 
and use overhead cameras t o  minimize  variations in  object 
appearance.  Such  domain  specificity  makes  each  new applica- 
tion expensive and  time consuming to develop. There is thus 
a clear need for  computer vision systems  capable of dealing 
with less predictable and less structured scenes. 

Developing general-purpose computer vision systems has 
proved surprisingly difficult and complex. This has been 
particularly frustrating  for vision researchers, who daily 
experience the  apparent ease and  spontaneity of human 
perception. Research  in the last few years,  however, Has  pro- 
vided new insights into  the  computational  nature of vision 
that  could lead to systems  capable of high performance  in a 
broad range of visual domains. We present here an emerging 
view of vision as a computational process, discuss some of the 
early  work in  computer vision that led to this view, and  put 
forward  a  synthesis of recent  theoretical  and  experimental 
results  in the  form of a putative design for a general-purpose 
vision system. 
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